Surgery

  • 3D-microdevice for minimally invasive surgeries

    Figures 1 and 2. Microswimmer CAD and microswimmer micrograph. © MPI IS

    Scientists take challenge of developing functional microdevices for direct access to the brain, spinal cord, eye and other delicate parts of human body. A tiny robot that gets into the human body through the simple medical injection and, passing healthy organs, finds and treats directly the goal – a non-operable tumor… Doesn’t it sound at least like science-fiction? To make it real, a growing number of researchers are now working towards this direction with the prospect of transforming many aspects of healthcare and bioengineering in the nearest future. What makes it not so easy are unique challenges pertaining to design, fabrication and encoding functionality in producing functional microdevices.

  • Physics That Gets Under Your Skin

    Visional minimal invasive microsurgery - with the first-time real-time tracking of mobile micro-objects deep in the tissue, a decisive step has been taken. Picture Credit: Science Picture Co / Alamy Stock Photo

    Due to modern advances in medicine ever smaller objects are moved through the human body: nanotherapeutics, micro-implants, mini-catheters and tiny medical instruments. The next generation of minimally invasive microsurgery will enable small micro robots to move with their own drive through the body and through the tissue to transport substances and micro-objects. Therefore, new methods must be developed to locate these micro-objects precisely and to monitor their movement. Conventional methods such as ultrasound, X-ray or magnetic resonance imaging (MRI) fail either due to insufficient resolution or due to long-term damage from radioactivity or high magnetic fields.

  • Surgery Training with Robots and Virtual Reality

    Virtual Reality environments and robots can help surgeons prepare for challenging operations. Viktoria Stoiser

    The insertion of hip implants places high demands on surgeons. To help young doctors practice this operation under realistic conditions, scientists from the University of Bremen and Chemnitz University of Technology are developing a dynamic hip implant simulator. Users see the scene in virtual reality and operate surgical instruments connected to a robot.
    Joint press release from the University of Bremen and Chemnitz University of Technology
    The growing number of older people worldwide is leading to an increase in hip implants and other joint replacement operations. This also increases the need for highly qualified orthopedic surgeons, but the practical training of these operations is very difficult to carry out.