Surfaces

  • A new study shows how dangerous germs travel as stowaways from one continent to another

    Using a special culture, germs from smears can be recognized and identified. Photo: WWU/H. Dornhege

    As scientists from Münster University, in collaboration with the Robert Koch Institute in Berlin, have now demonstrated, toilets at airports are also a “transfer point” for germs. These include germs against which traditional antibiotics for the treatment of bacterial infections are not, or only partially, effective.
    Münster (mfm/sm) – Everyday life at an airport: there’s still time before the jet taking passengers to faraway countries takes off – time enough for a quick visit to the toilet. What awaits passengers there is not always a pleasant sight. However, what they don’t see can be much worse. As scientists from Münster University, in collaboration with the Robert Koch Institute in Berlin, have now demonstrated, toilets at airports are also a “transfer point” for germs.

  • A New T-cell Population for Cancer Immunotherapy

    Picture of a healthy human T-cell.

    Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

    T lymphocytes (short T cells) are a special type of cells that recognize germs and protect our body from infections. Their second important job is to ride the body of harmed cells, such as tumor cells. T cells are able to identify tumor cells because they look different than normal healthy cells. The way in which they do this is governed by surface expression of T-cell receptors (TCR). Each receptor interacts with a specific molecule on the surface of the target cell.

  • atmoFlex – Fraunhofer FEP enhances its facilities for coating plastic films

    1,200 mm-wide slot die for contactless coating of fragile substrate can be heated up to 50°C. © Fraunhofer FEP, Fotograf: Jürgen Lösel

    A leader in thin-film technology R&D, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP in Dresden, Germany, has significantly enhanced its capabilities. Scientists will be explaining and illustrating the new opportunities using a model of the new coating machine atmoFlex at their trade fair booth during ICE 2017 in Munich/Germany (Hall A5, booth 1157), from March 21 – 23.

    Fraunhofer FEP has been pushing the technology development for thin-film coatings on plastic film for years. The basis for these advances has been its roll-to-roll process lines that facilitate the development of coating systems, from lab-scale to prototype samples, up through initial pilot manufacturing for industrial applications.

  • Breakthrough in materials science: Kiel research team can bond metals with nearly all surfaces

    The targeted etching process of “nanoscale-sculpturing” roughens the upper layer of metal (here aluminium, 20 µm = 0.02 mm), thereby creating a 3D-structure with tiny hooks.   Melike Baytekin‐Gerngroß

    How metals can be used depends particularly on the characteristics of their surfaces. A research team at Kiel University has discovered how they can change the surface properties without affecting the mechanical stability of the metals or changing the metal characteristics themselves. This fundamentally new method is based on using an electro-chemical etching process, in which the uppermost layer of a metal is roughened on a micrometer scale in a tightly-controlled manner. Through this “nanoscale-sculpturing” process, metals such as aluminium, titanium, or zinc can permanently be joined with nearly all other materials, become water-repellent, or improve their biocompatibility.

  • Chemists of TU Dresden Develop Highly Porous Material, More Precious than Diamonds

    The framework of DUT-60 holds a pore volume of 5.02 cm3g-1 – the highest specific pore volume one has ever measured among all crystalline framework materials so far. Dr. I. Senkovska, TU Dresden

    World Record of Cavities. Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material is, the more liquids and gases it is able to store. However, a multitude of pores destabilizes the material. In search of the stability limits of such frameworks, researchers of the TU Dresden’s Faculty of Chemistry broke a world record: DUT-60 is a new crystalline framework with the world’s highest specific surface and the highest specific pore volume (5.02 cm3g-1) measured so far among all known crystalline framework materials.

  • Complex Tessellations, Extraordinary Materials

    So-called Archimedean tessellations are often associated with very special properties, for example unusual electrical conductivity, special light reflectivity or extreme mechanical strength. Klappenberger and Zhang / TUM

    An international team of researchers lead by the Technical University of Munich (TUM) has discovered a reaction path that produces exotic layers with semiregular structures. These kinds of materials are interesting because they frequently possess extraordinary properties. In the process, simple organic molecules are converted to larger units which form the complex, semiregular patterns.

  • Efficiency Boost for Laser Cutting and Drilling at LASER CHINA

    © Photo Fraunhofer ILT, Aachen, Germany / Volker Lannert.  A programmable multi-beam optics with galvanometer scanner can split the laser into any number of beamlets. The resulting pattern can be changed and positioned anywhere on the workpiece.

    The Chinese market for industrial laser technology is still growing fast and so does the LASER World of PHOTONICS CHINA, which has become the most visited trade show for lasers and optical components. At this year’s trade show, the Fraunhofer Institute for Laser Technology ILT will be presenting new ideas for industrial laser applications, most of which are focused on increased efficiency of laser micro machining processes (Hall N4, Booth 4243).

  • Electron highway inside crystal

    Step edges on topological crystalline insulators may lead to electrically conducting pathways where electrons with opposite spin spin move in converse directions - any U-turn is prohibited. Picture: Thomas Bathon/Paolo Sessi/Matthias Bode

    Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science. Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was highlighted again as the Royal Swedish Academy of Sciences in Stockholm awarded this year's Nobel Prize in Physics to three British scientists for their research of so-called topological phase transitions and topological phases of matter.

  • Electronic tattoos: Using distinctive body locations to control mobile devices intuitively

    Using ultra-thin, electronic tattoos at distinctive body locations, users can control mobile devices. Universität des Saarlandes

    Computer scientists from Saarland University and the US company Google are giving wrinkles, knuckles and birthmarks a whole new meaning. Similarly to temporary tattoos for children, the researchers are placing ultra-thin, electronic tattoos on distinctive body locations. The user can touch, squeeze or pull them, and thereby intuitively control mobile devices such as a music player, or easily make indicators light up. The advantage is that the body locations are so familiar that the individual control elements can be operated even with one's eyes shut. In addition, they enable a completely new type of interaction, and also allow for a natural way to provide operating instructions.

  • Fire and Flame for New Surfaces

    A flame treatment facility in operation. esse CI

    The printing, coating and bonding of plastics requires the surface to be pre-treated. Flame treatment is one way to achieve this so-called activation. It is currently being used in many industrial sectors and has considerable potential for development. The Fraunhofer Institute for Applied Polymer Research IAP in Potsdam and the Italian company esse CI are uniting their expertise in surface chemistry and machine engineering in order to clearly expand the opportunities provided by flame treatment and to extend the range of surface properties. Interested companies can take part in the development of this technology and help advance its industrialization.

  • Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

    Outdoor weathering test stand at Westmole, Helgoland. © Fraunhofer IFAM

    Preventing corrosion and its consequences is a key issue in most industries because the cost of corrosion in Germany alone amounts to billions of euros. In addition, the marine growth on surfaces is a huge challenge for shipping, offshore wind turbines, and underwater steel structures. Fraunhofer IFAM has many years of experience developing effective corrosion protection systems and antifouling strategies. In order to further enhance the institute’s expertise in this area, outdoor weathering test stands have been acquired to augment existing test facilities and key personnel with the requisite know-how have been added to the maritime technologies team.

  • Functional films and efficient coating processes

    Optical system for inline monitoring of the film thickness and degree of crosslinking  of organic coatings © Photo Fraunhofer IVV

    The Fraunhofer Institute for Process Engineering and Packaging IVV together with the Fraunhofer Institute for Applied Polymer Research IAP and the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB will present new developments in films and the efficient control of coating processes at the upcoming International Converting Exhibition Europe ICE being held in Munich from 21 - 23 March 2017. Under the motto "Functional films – efficient coating processes", emphasis will be put on new film functionalities and accelerated test methods (Hall A5, Stand 1031).

  • Gelatine instead of forearm

    The EMPA skin model: gelatine on a cotton substrate. EMPA

    The characteristics of human skin are heavily dependent on the hydration of the tissue - in simple terms, the water content. This also changes its interaction with textiles. Up to now, it has only been possible to determine the interaction between human skin and textiles by means of clinical trials on human subjects. Now, EMPA researchers have developed an artificial gelatine-based skin model that simulates human skin almost perfectly. The moisture content of the human skin influences its characteristics. The addition of moisture softens the skin and changes its appearance. This can be seen in DIY work for example: a thin film of perspiration helps to provide better grip when using a hammer or screwdriver; however, excessive perspiration can make the tools slip.

  • Hannover Messe: Gecomer®-Technology shows its performance in endurance tests

    Experimental set-up for endurance tests of Gecomer® structures. Source: Ollmann

    Researchers at the Leibniz Institute for New Materials (INM) have demonstrated the performance of their technology in endurance tests: Even after 500,000 testing cycles the dry adhesive structures work reliable. Thus, the next step towards industrial application is done.

    Components with highly sensitive surfaces are used in automotive, semiconductor, display and optical technologies. During production, these parts have to be handled repeatedly by pick-and-place processes. The proprietary Gecomer® principle reduces the risk of surface contamination with residues, and of mechanical damage due to gripping.

  • Hannover Messe: Silver circuits on foil allow curved touchscreens

    Photochemical Metallization allows conductor paths even on flexible foils as well as on stretchable silicone. Source: Gabi Klein, INM

    To allow typing and swiping even on curved smartphones, touchscreens and electric conductor paths have also to be curved. Therefore INM – Leibniz Institute for New Materials has developed a technique, which allows such conductor paths even on flexible foils as well as on stretchable silicone. INM will be presenting the so called photochemical metallization on this year’s Hannover Messe at the Stand B46 in hall 2 from 24 April to 28 April.

    Mobile phones and smart phones still have not been adapted to the carrying habits of their users. That much is clear to anyone who has tried sitting down with a mobile phone in the back pocket: the displays of such devices are rigid and do not yield to the anatomical forms adopted by the people carrying them.

  • High conductive foils enabling large area lighting

    Roll-to-roll processed OLED on SEFAR TCS Planar substrates. © Fraunhofer FEP, Photographer: Jürgen Lösel

    Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments developed a roll-to-roll processed large area flexible OLED during a joint project.

    Large area OLED lighting is an attractive technology for various applications in residential, architectural and automotive lighting segments. Sefar developed high conductive, transparent and flexible electrode substrates enabling large area homogenous lighting which is demonstrated by Fraunhofer FEP in a roll-to-roll (R2R) process.

  • High Resolution Laser Structuring of Thin Films at LOPEC 2017

    Laser ablation of ITO on flexible PET substrate. Fraunhofer ILT, Aachen, Germany.

    Fraunhofer Institute for Laser Technology ILT will present laser processes for micro structuring of thin films at LOPEC 2017, trade fair for printed electronics in Munich, Germany. Innovative solutions for application fields like photovoltaics and thin film processing will be shown at COPT.NRW joint stand 405, hall B0, from March 29 to 30.

  • High-performance Roll-to-Roll processing for flexible electronics

    Ultra-thin flexible Corning® Willow® Glass with a glass thickness of 100 μm © Fraunhofer FEP, Photographer: Jürgen Lösel

    Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics presents a roll of flexible thin glass, which is coated with highly conductive ITO continuously on 100 meters with roll-to-roll technology for the first time at FLEX 2017, from June 19 – 22, 2017 in Monterey, USA at booth no. 1004.

  • Humboldt Fellowship for research on tunable optical surfaces for Terahertz technology

    Dr. Corey Shemelya. Thomas Koziel/TU Kaiserslautern

    U.S. scientist Dr. Corey Shemelya has recently started a research stay at the University of Kaiserslautern in the form of a fellowship granted by the Alexander von Humboldt Foundation. Dr. Shemelya is studying structured optical surfaces which hold potential applications in communication technology and Terahertz imaging, e.g. body scanning equipment for airport safety. Shemelya is working in conjunction with the Terahertz Technology Laboratory of Professor Marco Rahm at the Department of Electrical and Computer Engineering and the State Research Center for Optical and Material Sciences (OPTIMAS).

  • Hydrogen Bonds Directly Detected for the First Time

    A hydrogen bond forms between a propellane (lower molecule) and the carbon monoxide functionalized tip of an atomic force microscope. University of Basel, Department of Physics

    For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances. Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are connected to one another via hydrogen atoms, an interaction known as hydrogen bonding. These interactions play an important role in nature, because they are responsible for specific properties of proteins or nucleic acids and, for example, also ensure that water has a high boiling temperature.