Silicon carbide nanoparticles

Silicon carbide nanoparticles are, as the name suggests, silicon carbide particles that measure between 1 to 100 nanometers.

  • Electronic Highways on the Nanoscale

    In the Laboratory a structured silicon carbide crystal is heated in a preparation chamber of a scanning tunneling microscope, so that small graphene structures can be formed. Photo: TU Chemnitz/Jacob Müller

    For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices. Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely converted to wasted heat. This is not only harmful to the environment, but also limits further miniaturization of electronic components and increase of clock rates. A way out of this dilemma are conductors with no electrical resistance.

  • Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

    High temperature sensor for extrusion systems: SOI chips (left) and casing (right). Fraunhofer IZM

    Many industrial processes depend on exact pressure gauges. The SOI high-pressure sensors (silicon-on-insulator) developed by the Fraunhofer Institute for Reliability and Microintegration IZM makes this exact monitoring possible for processes operating at temperatures of up to 400° centigrade. The sensor promise an exceptionally long life as well as precision and efficiency. To keep up with technological requirements, future iterations of the sensors will be designed to withstand temperatures above 600° centigrade.

  • The Fine Art of Tailoring Materials

    Siemens researchers subject generator bars to a potential difference of over 70,000 volts in order to test their capacity. Spectacular discharges occur during the process.

    The electronics industry requires plastics with precisely defined properties. Siemens is developing technologies that make it possible to combine materials in such a way as to meet increasingly specific demands. Each of us is in contact with plastics every day. In toothbrushes, ballpoint pens, smartphones — there’s no getting away from plastic, or, as the experts put it, synthetic polymers. Many of these everyday plastics have straightforward properties such as light weight, flexibility or hardness. Plastics for use in industry, especially in electrical engineering, require much more specialized properties. These range from transparency and magnetic qualities to the ability to withstand temperature extremes, and the ability to conduct – or minimize conduction of – heat or electricity.