Physics

Physics is the study of science that deals with matter, energy, motion, and force through time and space. 
Physics in nanotechnology embodies segments such as quantum computing, laser technology, photonics as some examples.

  • Corrective glass for mass spectrometry imaging

    Custom-built laser source for mass spectrometry imaging: By means of the improved LAESI technique the surface of this coarse piece of savoy cabbage can now be chemically analyzed. Benjamin Bartels / Max Planck Institute for Chemical Ecology

    Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now improved mass spectrometry imaging in such a way that the distribution of molecules can also be visualized on rippled, hairy, bulgy or coarse surfaces. The source of the laser-based technique was custom-built to accommodate the topography of non-flat samples. By employing a distances sensor, a height profile of the surface is recorded before the actual chemical imaging. The new tool can be used for answering ecological questions from a new perspective.

  • Cost efficient Diode Lasers for Industrial Applications

    The »Brilliant Industrial Diode Lasers« (BRIDLE) project has been finished successfully after 42 months of intense research activities. BRIDLE was made possible by funding from the European Commission. The seven project partners finished their work at the end of February 2016. The project was coordinated by »DILAS Diodenlaser GmbH« (Germany), the project partners are located in Germany, UK, Switzerland, France and Finland. BRIDLE targeted a major increase in the brightness achievable in direct diode laser systems, based on advances in diode laser and beam -combining technology. Throughout, the highest conversion was sought as was compatibility with low cost, volume manufacture.

  • Countdown to the space mission “Solar Orbiter”: Measuring instruments from Kiel start their voyage

    The three sensors from Kiel are ready for space: EPT-HET1 and 2 on the left, and STEP on the right. Photo/Copyright: Jürgen Haacks, CAU

    Around five years ago, a team led by a physicist from Kiel University, Professor Robert Wimmer-Schweingruber, won the coveted tender for providing instruments to be placed on board the “Solar Orbiter” space probe. This joint mission of the European Space Agency (ESA) and the US space agency NASA is expected to launch in October 2018, and will go closer to the sun than has ever been done before. Now, exactly on schedule, the preparations in Kiel for this mission are entering their final phase. On Monday 21 November the flight instruments from Kiel will be handed over to the space probe installation team in England.

  • Coupling a Nano-trumpet With a Quantum Dot Enables Precise Position Determination

    Trumpet-shaped nanowires with a length of about 10 micrometers are coupled to quantum dots located at their bases. Grenoble Alps University

    Scientists from the Swiss Nanoscience Institute and the University of Basel have succeeded in coupling an extremely small quantum dot with 1,000 times larger trumpet-shaped nanowire. The movement of the nanowire can be detected with a sensitivity of 100 femtometers via the wavelength of the light emitted by the quantum dot. Conversely, the oscillation of the nanowire can be influenced by excitation of the quantum dot with a laser. Nature Communications published the results.

  • Crystals for Superconduction, Quantum Computing and High Efficiency Solar Cells

    Crystals have applications in a wide variety of fields. Photo of a multicrystalline silicon wafer, which serves as the basis of a solar cell.  ©Fraunhofer ISE

    From March 8-10, 2017, an International Conference on Crystal Growth is to be held in Freiburg under the auspices of the German Association of Crystal Growth DGKK and the Swiss Society for Crystallography SGK-SSCR. The conference, jointly organized by the Fraunhofer Institute for Solar Energy Systems ISE, the Crystallography department of the Institute of Earth and Environmental Sciences at the University Freiburg and the University of Geneva, is to be held in the seminar rooms of the Chemistry Faculty of the University of Freiburg. Furthermore, the Young DGKK will hold a seminar for young scientists at Fraunhofer ISE on March 7, 2017.

  • Data Storage Using Individual Molecules

    Graphic animation of a possible data memory on the atomic scale: A data storage element - consisting of only 6 xenon atoms - is liquefied by a voltage pulse. Universität Basel, Departement of Physics

    Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

  • Dauerbetrieb der Tokamaks rückt näher

    Aussichtsreiche Experimente in ASDEX Upgrade / Bedingungen für ITER und DEMO nahezu erfüllt

  • Der Quanten-Strom im Graphen

    Wenn der Strom in Portionen fließt: Berechnungen der TU Wien liefern Erkenntnisse über die Quanten-Eigenschaften des Kohlenstoff-Materials Graphen.

  • Describing the Behaviour of Electrons Under Extreme Conditions for the First Time

    In nature, the hot, dense matter of electron gas occurs inside planets, such as here in Jupiter. Photo: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset

    Electrons are an elementary component of our world: they surround the core of all atoms, are essential to the formation of molecules, and primarily determine the properties of solids and liquids. They are also the charge carriers of electrical current, without which our high-tech environment with smartphones, computers and even the traditional light bulb would not be conceivable. In spite of their omnipresence in everyday life, we have not yet been able to accurately describe the behaviour of interacting electrons - only approximate it in models - especially at extreme temperatures and densities, such as inside planets or in stars.

  • Designing Nanocrystals for More Efficient Optoelectronics

    The luminescent atoms in the image show a nanocrystal which is characterized with atomistic resolution, including its interface chemistry. experimental and theoretical approaches. Published with permission by Nature Publishing Group. Copyright: Peter Allen

     

    New artificial materials for semiconductors used in solar cells or photoelectrochemical cells that are designed from scratch with totally new and tailored properties: this is the latest research topic of Stefan Wippermann, head of the group “Atomistic Modelling“ at the Max-Planck-Institut für Eisenforschung), and his team. They characterized for the first time with atomic resolution a typical material system and are able to set design principles.

  • Detailreiche Bilder eines planetaren Embryos zeigen Turboversion der Planetenentstehung

    Beobachtungen mit dem Radioteleskop VLA in New Mexico zeigen die inneren Partien der Planeten-Geburtsstätte rund um den jungen Stern HL Tauri so detailreich wie nie zuvor. Deutlich sichtbar ist dabei ein riesiger Staubklumpen mit dem drei- bis achtfachen der Erdmasse, der ideale Bedingungen für die Entstehung eines Planeten bietet. Die Masse des neuen Planeten dürfte zwischen jener der Erde und jener des Neptun liegen. Das Vorhandensein des Klumpens zeigt eine Lösung für ein grundlegendes Problem der Planetenentstehung auf: wie Planeten innerhalb der relativ kurzen Zeit entstehen können, die für ihr Wachstum zur Verfügung steht.

  • Deutsche Physikalische Gesellschaft awards Technology Transfer Prize to Karlsruhe Institute of Technology

    The DGP awards the Technology Transfer Prize 2017/2018 jointly to  Nanoscribe GmbH, as well as the Institute for Nanotechnology and Innovation and Relation Management of the Karlsruhe Institute of Technology (KIT). © DPG 2016

    The DPG Technology Transfer Prize 2017/2018 will be awarded jointly to Nanoscribe GmbH, Eggenstein-Leopoldshafen, and the Institute for Nanotechnology and Innovation and Relation Management at the Karlsruhe Institute of Technology (KIT). The three institutions received the award for the outstanding transfer of scientific findings in the field of 3D laser lithography into commercial exploitation - in particular for the fabrication of micro- and nanostructures.

  • Devarnishing by electron beam

    The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its electron beam technology as an alternative beam tool for devarnishing at the parts2clean trade show in Stuttgart, from May 31st to June 2nd, 2016 at the joint booth of the Fraunhofer Cleaning Technology Alliance, Hall 7, Booth B41.

  • Developing Reliable Quantum Computers

    Illustration: Quantum Optics and Statistics, University of Freiburg

    International research team makes important step on the path to solving certification problems. Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to ensure it is working reliably? Depending on the algorithmic task, this could be an easy or a very difficult certification problem.

  • Development and Fast Analysis of 3D Printed HF Components

    Fraunhofer FHR’s high frequency scanner SAMMI® analyses the quality of 3D printed high frequency structures. Fraunhofer FHR

    3D printing is becoming increasingly important for the development of modern high frequency systems as it opens up new design possibilities. Fraunhofer FHR is exploring these possibilities for its customers and partners: from designing new HF components to testing these components. Engineers are inspecting the quality of components manufactured using additive processes with their high frequency transmitted light imaging system SAMMI®, e.g. to verify the correct density gradients of the material. As a member of the Forschungsfabrik Mikroelektronik Deutschland, they will present this system at the Hannover Messe in hall 2, booth C22, from April 23 to 27, 2018.

  • DFG Funding: An Atom Trap for Water Dating

    Atom trap wherein 39Ar atoms are captured and detected. Florian Freundt, Institute of Environmental Physics, Heidelberg University

    A Heidelberg physics project funded by the German Research Foundation (DFG) will focus on a new type of dating method for use in the earth and environmental sciences. The research team will deploy a special radioactive isotope of the noble gas argon (Ar) for the purpose of water dating. This isotope is useful for determining age in the range of 50 to 1,000 years. Prof. Dr Markus Oberthaler of the Kirchhoff Institute for Physics and Prof. Dr Werner Aeschbach of the Institute of Environmental Physics of Heidelberg University will direct the three-year project.

  • Diamond Friction: Simulation Reveals Previously Unknown Friction Mechanisms at the Molecular Level

    Passivation of water-lubricated diamond surfaces by aromatic Pandey surface reconstruction (orange). Image: © Fraunhofer Institute for Mechanics of Materials IWM

    Diamond coatings help reduce friction and wear on tools, bearings, and seals. Lubricating diamond with water considerably lowers friction. The reasons for this are not yet fully understood. The Fraunhofer Institute for Material Mechanics IWM in Freiburg and the Physics Institute at the University of Freiburg have discovered a new explanation for the friction behavior of diamond surfaces under the influence of water. One major finding: in addition to the known role played by passivation of the surfaces via water-splitting, an aromatic passivation via Pandey reconstruction can occur. The results have been published in the journal Physical Review Letters.

  • Diamond Lenses and Space Lasers at Photonics West

    Image 1: This laser cutting head with diamond optics features built-in water cooling and shielding gas supply; diamond lenses reduce its weight by 90%. © Fraunhofer ILT, Aachen, Germany.

    San Francisco's Photonics West, the world's premier optics and photonics trade fair, aims to bring together science and industry once again in 2018. Fraunhofer Institute for Laser Technology ILT will be putting on an effective demonstration of how to converge the two. The Aachen-based company's booth in the German Pavilion is primed to showcase cutting-edge technology, such as a 90% lighter laser cutting head and a laser platform for space applications. Photonics experts from around the world will make their annual pilgrimage to San Francisco in late January.

  • Diamond Watch Components

    An anchor for a watch component made of single-crystal synthetic diamond. Schweizerischer Nationalfonds SNF

    SNSF-funded researchers have developed a new technique for carving materials to create micromechanical systems. In particular, they have created a miniscule watch component out of synthetic single-crystal diamond.

  • Die extrem breite IR-Absorptionsbande des Wassers

    Die extrem breite IR Absorptionsbande des Wassers picture 1 | Abb. 1: Die Hydratisierung von Protonen geht weit über das typische Textbuchbeispiel des Hydroniums (H₃O⁺) hinaus.

    Die Ursache der extrem breiten Infrarotabsorption von Protonen in wässriger Umgebung wird seit langem kontrovers diskutiert. Ein Forscherteam des Max-Born-Instituts in Berlin und der Ben Gurion Universität des Negev in Beer-Sheva zeigt jetzt am Beispiel des Zundel-Kations (H₂O...H⁺...OH₂) H₅O₂⁺, dass die umgebende Flüssigkeit fluktuierende elektrische Kräfte auf das Proton ausübt und damit seine Schwingungsbewegung zwischen den beiden Wassermolekülen moduliert. Dieser Mechanismus ruft zusammen mit niederfrequenten thermischen Bewegungen die extreme Verbreiterung des Infrarotspektrums hervor.