Physics

Physics is the study of science that deals with matter, energy, motion, and force through time and space. 
Physics in nanotechnology embodies segments such as quantum computing, laser technology, photonics as some examples.

  • Biological Signalling Processes in Intelligent Materials

    Graphic: Wilfried Weber

     

    Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. These biohybrid systems were engineered to perform certain functions, such as the counting signal pulses in order to release bioactive molecules or drugs at the correct time, or to detect enzymes and small molecules such as antibiotics in milk. The interdisciplinary team presented their results in some of the leading journals in the field, including Advanced Materials and Materials Today.

  • Bit Data Goes Anti-Skyrmions

    Anti-skyrmions on a racetrack. MPI of Microstructure Physics

    Today’s world, rapidly changing because of “big data”, is encapsulated in trillions of tiny magnetic objects – magnetic bits – each of which stores one bit of data in magnetic disk drives. A group of scientists from the Max Planck Institutes in Halle and Dresden have discovered a new kind of magnetic nano-object in a novel material that could serve as a magnetic bit with cloaking properties to make a magnetic disk drive with no moving parts – a Racetrack Memory – a reality in the near future.

  • Black Nanoparticles Slow the Growth of Tumors

    Infrared thermal images - Right side: Elevated tumor (yellow) temperature in mice after laser irradiation in with OMV-melanin treated mice. Left side: mouse treated with OMVs without melanin. Vipul Gujrati / Technical University of Munich

    The dark skin pigment melanin protects us from the sun’s damaging rays by absorbing light energy and converting it to heat. This could make it a very effective tool in tumor diagnosis and treatment, as demonstrated by a team from the Technical University of Munich (TUM) and Helmholtz Zentrum München. The scientists managed to create melanin-loaded cell membrane derived nanoparticles, which improved tumor imaging in an animal model while also slowing the growth of the tumor.

  • Blick in den Anfang des Regenbogens

    Die intensivsten und schnellsten optischen Signale – Blitze aus einem Ultrakurzpulslaser – sind heute das Präzisionswerkzeug der Grundlagenforschung, Automobilindustrie und Augenheilkunde. Ihr Licht unterscheidet sich grundlegend von üblichen, einfarbigen Laserstrahlen: Es besteht aus einem Regenbogenspektrum, und je kürzer der Puls, desto reicher die Farben. Wissenschaftler der Universität Göttingen und der University of California in Los Angeles haben nun erstmals die Entstehung dieses „Regenbogens“ in Echtzeit und mit einer Bildrate von 90 Millionen Schnappschüssen pro Sekunde gefilmt.

  • Breaking Newton's Law

    Physicists have observed an intriguing oscillatory back-and-forth motion of a quantum particle in a one-dimensional atomic gas. Florian Meinert

    In the quantum world, our intuition for moving objects is strongly challenged and may sometimes even completely fail. Experimental physicists of the University of Innsbruck in collaboration with theorists from Munich, Paris and Cambridge have found a quantum particle which shows an intriguing oscillatory back-and-forth motion in a one-dimensional atomic gas. A ripe apple falling from a tree has inspired Sir Isaac Newton to formulate a theory that describes the motion of objects subject to a force. Newton’s equations of motion tell us that a moving body keeps on moving on a straight line unless any disturbing force may change its path. The impact of Newton’s laws is ubiquitous in our everyday experience, ranging from a skydiver falling in the earth's gravitational field, over the inertia one feels in an accelerating airplane, to the earth orbiting around the sun.

  • Breakthrough in Graphene Research

    Different patterns are formed at the edges of nanographene. Zigzags are particularly interesting but unstable. FAU researchers have succeeded in creating stable layers of carbon with this pattern. Image: FAU/Konstantin Amsharov

    Graphene is a promising material for use in nanoelectronics. Its electronic properties depend greatly, however, on how the edges of the carbon layer are formed. Zigzag patterns are particularly interesting in this respect, but until now it has been virtually impossible to create edges with a pattern like this. Chemists and physicists at FAU have now succeeded in producing stable nanographene with a zigzag edge. Not only that, the method they used was even comparatively simple.

  • Breakthrough in Quantum Physics: Reaction of Quantum Fluid to Photoexcitation of Dissolved Particles

    Markus Koch (3rd from left), Bernhard Thaler (4th fro left), head of institute Wolfgang Ernst (far right) and team in the "Femtosecond-Laser-Lab" at the Institute of Experimental Physics at TU Graz. ©Lunghammer - TU Graz

    Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet. In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on processes in molecules and clusters which take place on time scales of picoseconds (10⁻¹² seconds) and femtoseconds (10⁻¹⁵ seconds). Now Koch and his team have achieved a breakthrough in the research on completely novel molecular systems.

  • Breakthrough in spintronics

    Bismuthene film through the scanning tunnelling microscope. The honeycomb structure of the material (blue) is visible. A conducting edge channel (white) forms at the edge of the insulating film. Abbildung: Felix Reis

    It's ultra-thin, electrically conducting at the edge and highly insulating within – and all that at room temperature: Physicists from the University of Würzburg have developed a promising new material. The material class of topological insulators is presently the focus of international solids research. These materials are electrically insulating within, because the electrons maintain strong bonds to the atoms. At their surfaces, however, they are conductive due to quantum effects. 

  • Breakthrough with a chain of gold atoms

    Arists’ view of the quantized thermal conductance of an atomically thin gold contact. Created by Enrique Sahagun

    In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport. The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops. Heat transport is of similar fundamental importance and its control is for instance necessary to efficiently cool the ever smaller chips. An international team including theoretical physicists from Konstanz, Junior Professor Fabian Pauly and Professor Peter Nielaba and their staff, has achieved a real breakthrough in better understanding heat transport at the nanoscale.

  • Brightest Source of Entangled Photon

    Optical setup for experiments with entangled photons at IFW Dresden. Photo: Jürgen Loesel

    Scientists at Leibniz Institute for Solid State and Materials Research Dresden (IFW) and at Leibniz University Hannover (LUH) have developed a broadband optical antenna for highly efficient extraction of entangled photons. With a yield of 37% per pulse, it is the brightest source of entangled photons reported so far.

  • Calculating Quietness

    Perforated sound absorbers for engines. Figure: Schmidt/MATHEON

    Noise bothers people and can cause illness. Researchers are working to dampen the sound directly at the source, for example through perforated walls in engines. Scientists around junior-group leader Dr. Kersten Schmidt from the Berlin research center MATHEON have now developed mathematical models helping to simulate and optimize sound emitters like this considerably faster and with a lower computational effort than before. The engine manufacturers in the region will also benefit from this.

  • Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

    Artistic rendering of a light-emitting transistor with carbon nanotubes between two mirrors for electrical generation of polaritons. Image credit: Dr Yuriy Zakharko, co-author

    Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University (Germany) and the University of St Andrews (Scotland) used light-emitting and extremely stable transistors to reach strong light-matter coupling and create exciton-polaritons. These particles may pave the way for new light sources, so-called electrically pumped polariton lasers, that could be manufactured with carbon nanotubes.

  • Carinthia continues to expand Villach as a microelectronics research cluster

    CTR research cleanroom media conference from left: Werner Scherf (CTR), Gaby Schaunig (Deputy Governor of Carinthia), Simon Grasser (CTR)  CTR/Helge Bauer

    Carinthian Tech Research (CTR) invests €4.5 Mio in research cleanroom for microsensors and systems integration. Carinthian government supports investment in high-tech facilities at the Villach site.

    CTR Carinthian Tech Research is on of Austria’s largest application-oriented research centres in the area of smart sensors and systems integration. In close cooperation with industry, over 70 researchers work on developing the tiniest microsensors and power electronics as well as their assembly and packaging. An important new addition to the R&D facilities at the Villach site is the recently built research cleanroom, which is now available for microchip research and systems integration.

  • Center for plasma medicine opened in Korea

    Opening ceremony of the APMC in Korea, with Prof. Chun, Director of the Kwangwoon University of Seoul, Prof. Choi, Director of the PBRC Seoul and Prof. Weltmann, Director of the INP Greifswald  INP

    With a ceremonial opening in presence of the German ambassador in Korea on February 6th, 2017 the cross-national „Applied Plasma Medicine Center“ (APMC) of the Leibniz-Institute for Plasma Science and Technology e.V. (INP Greifswald) and the Plasma Bioscience Research Center (PBRC) in Seoul, Korea was founded.

  • Cfaed Researchers of TU Dresden Uncover Doping in Organic Semiconductors

    Geometry of a molecular cluster of dopant and host molecules with benzimidazoline dopant and a C60 molecule. S. Schellhammer/ F. Ortmann

    A group of physicists from the cfaed at TU Dresden, together with researchers from Japan, were able to demonstrate in a study how the doping of organic semiconductors can be simulated and experimentally verified. The study has now been published in “Nature Materials”. In semiconductor technology, doping refers to the intentional introduction of impurities (also known as dopants) into a layer or into the intrinsic semiconductor of an integrated circuit.

  • Chemical Reactions in the Light of Ultrashort X-ray Pulses from Free-electron Lasers

    Ultrashort X-ray pulses (pink) ionize neon gas in the center of the ring. An infrared laser (orange) deflects the electrons (blue) on their way to the detectors. Image: Terry Anderson / SLAC National Accelerator Laboratory

    Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

  • Chemists of TU Dresden Develop Highly Porous Material, More Precious than Diamonds

    The framework of DUT-60 holds a pore volume of 5.02 cm3g-1 – the highest specific pore volume one has ever measured among all crystalline framework materials so far. Dr. I. Senkovska, TU Dresden

    World Record of Cavities. Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material is, the more liquids and gases it is able to store. However, a multitude of pores destabilizes the material. In search of the stability limits of such frameworks, researchers of the TU Dresden’s Faculty of Chemistry broke a world record: DUT-60 is a new crystalline framework with the world’s highest specific surface and the highest specific pore volume (5.02 cm3g-1) measured so far among all known crystalline framework materials.

  • Coating Free-form Surfaces on Large Optical Components

    1-dimensional graded, nearly sinusoidal layer thickness curve on glass substrate (450x450 mm). © Fraunfofer FEP

    The business unit Precision Coatings at Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has special expertise in developing deposition processes for high-precision coating systems on optical components. Now, a coating technology for Deposition of laterally graded optical layers on 2D and in the future also on 3D substrates has been developed. The results will be presented at the 2nd OptecNet Annual Conference in Berlin, June 20-21, 2018.

  • Cold Molecules on Collision Course

    Schematic view of the experimental setup of the “cryofuge”. Graphic: MPQ, Quantum Dynamics Division

    Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules. 

    How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at the same time. Scientists around Dr. Martin Zeppenfeld from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have now taken an important step in this direction by developing a new cooling method: the so-called “cryofuge” combines cryogenic buffer-gas cooling with a special kind of centrifuge in which rotating electric fields decelerate the precooled molecules down to velocities of less than 20 metres per second.

  • Color Effects from Transparent 3D-printed Nanostructures

    Light hits the 3D-printed nanostructures from below. After it is transmitted through, the viewer sees only green light—the remaining colors are redirected. Thomas Auzinger

    Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and certain color effects are impossible to achieve. The natural world, however, also exhibits structural coloration, where the microstructure of an object causes various colors to appear. Peacock feathers, for instance, are pigmented brown, but—because of long hollows within the feathers—reflect the gorgeous, iridescent blues and greens we see and admire.