Physics

Physics is the study of science that deals with matter, energy, motion, and force through time and space. 
Physics in nanotechnology embodies segments such as quantum computing, laser technology, photonics as some examples.

  • Artificially Produced Cells Communicate with Each Other: Models of Life

    First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope. Image: U. Benz / TUM

    Friedrich Simmel und Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, exchange small chemical signaling molecules to trigger more complex reactions, such as the production of RNA and other proteins. Scientists around the world are working on creating artificial, cell-like systems that mimic the behavior of living organisms. 

  • Asymmetric Plasmonic Antennas Deliver Femtosecond Pulses for Fast Optoelectronics

    Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire. Image: Alexander Holleitner / TUM

    A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

  • Atomic precision: technologies for the next-but-one generation of microchips

    Atomic precision technologies for the next but one generation of microchips picture 2 Image 2: The coating of mirrors is carried out with atomic precision at Fraunhofer IOF in Jena. © Fraunhofer IOF, Jena, Germany

    In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

  • Attosecond camera for nanostructures

    Attosecond camera for nanostructures | When laser light interacts with a nanoneedle (yellow), electromagnetic near-fields are formed at its surface. A second laser pulse (purple) emits an electron (green) from the needle, permitting to characterize the near-fields.

    Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

  • Attoseconds Break into Atomic Interior

    After the interaction of a xenon atom with two photons from an attosecond pulse (purple), the atom is ionized and multiple electrons (green balls) are ejected. This two-photon interaction is made possible by the latest achievements in attosecond technology. Graphic: Christian Hackenberger

    A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

  • Auch das Deuteron gibt Rätsel auf: Proton und Deuteron doch kleiner als gedacht?

    Auch das Deuteron gibt Rätsel auf Proton und Deuteron doch kleiner als gedacht picture1 | Karsten Schuhmann und Aldo Antognini an dem Lasersystem, das für die Laserspektroskopie eingesetzt wurde. Foto: Paul Scherrer Institut/Markus Fischer

    Das Deuteron – ein Atomkern aus nur einem Proton und einem Neutron – ist deutlich kleiner als bislang gedacht. Zu diesem Ergebnis kommt eine internationale Forschungsgruppe, die Experimente am Paul Scherrer Institut PSI durchgeführt hat. Dies passt zu einer Studie aus dem Jahr 2010, bei dem dieselbe Forschungsgruppe das Proton vermessen und damit das "Rätsel um den Protonradius" begründet hatte. Nun gibt die Deuterongrösse ein analoges Rätsel auf. Womöglich wird dies zu einer Anpassung der Rydbergkonstante führen. Die Experimente fanden an der weltweit leistungsstärksten Myonenquelle am PSI statt, wo die Forschenden mittels Laserspektroskopie sogenanntes myonisches Deuterium vermassen.

  • Aus zwei mach eins: Wie aus grünem Licht blaues wird

    Aus zwei mach eins Wie aus grünem Licht blaues wird | Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) Abbildung: Michael Oldenburg

    Die Hochkonversion von Photonen ermöglicht, Licht effizienter zu nutzen: Zwei Lichtteilchen werden in ein Lichtteilchen mit höherer Energie umgewandelt. Forscher am KIT haben nun erstmals gezeigt, dass innere Grenzflächen zwischen oberflächengebundenen metallorganischen Gerüstverbindungen (SURMOFs) sich optimal dafür eignen – sie haben aus grünem Licht blaues Licht gemacht. Dieses Ergebnis wurde nun in der Fachzeitschrift Advanced Materials vorgestellt und eröffnet neue Möglichkeiten für optoelektronische Anwendungen wie Solarzellen oder Leuchtdioden. (DOI: 10.1002/adma.201601718)

  • Batterie und Elektronik aus dem Tintenstrahldrucker

    Batterie und Elektronik aus dem Tintenstrahldrucker | Schaltkreise aus dem Tintenstrahldrucker sind so flexibel wie das Papier auf dem sie gedruckt sind.

    Der südkoreanischer Forscher Sang-Young Lee hat einen handelsüblichen Drucker so umgebaut, dass er Energiespeicher und einfache Schaltkreise druckt. Ziel dabei ist, tragbare Technik unsichtbar in beliebigen Bauformen zu integrieren.

    Unter einem Tisch im Labor von Sang-Young Lee befindet sich ein normaler, etwas abgenutzter Tintenstrahldrucker, den er so modifiziert hat, dass er elektronische Schaltkreise und Superkondensatoren produziert. Dazu entleert Lee die Tintenbehälter und befüllt sie mit speziellen Batterie-Materialien und leitfähiger Tinte. Auf behandeltem Papier druckt das Gerät dann flexible, haltbare Superkondensatoren und einfache Schaltkreis-Komponenten, zum Beispiel in Form einer hochaufgelösten Karte der Republik Korea, Blumen oder Logos.

  • Batteries with Better Performance and Improved Safety

    Composition of the solid sodium battery. Empa

    Researchers from Empa and the University of Geneva have developed a prototype of a novel solid sodium battery with the potential to store extra energy. Phones, laptops, electric cars – batteries are everywhere. And to meet the expectations of today’s consumers, these batteries are increasin­gly lighter, more powerful and designed to last longer. Currently the core technology for these applications is lithium ion batteries. But the technology is expensive and contains a flammable liquid, which may represent a safety hazard, when the battery is abused.

  • Better tests for Schrödinger cats

    MPQ scientists develop new methods to test the world view of macroscopic realism

    In a classical world, objects have pre-existing properties, physical influences are local and cannot travel faster than the speed of light, and it is in principle possible to measure the properties of macroscopic systems without altering them. This is referred to as local realism and macroscopic realism, and quantum mechanics is in strong contradiction with both of them. While Bell inequalities have been proven to be an optimal tool for ruling out local realism in quantum experiments, Lucas Clemente and Johannes Kofler from the Theory Division of the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany, have now shown that inequalities can never be optimal for tests of macroscopic realism. Their results reveal a hitherto unknown radical difference in the mathematical structures of spatial and temporal correlations in quantum physics, and also provide a better tool for the search of Schrödinger cat-like states (PRL.116.150401, 15. April 2016).

  • Bioimaging - Tiefe Blicke in den Nanokosmos

    Am Biomedizinischen Centrum (BMC) geht die Core Facility Bioimaging, eine Serviceeinheit für lichtmikroskopische Verfahren, offiziell in Betrieb – in einer neuartigen Kooperation mit dem Unternehmen Leica Microsystems.

  • Biological Signalling Processes in Intelligent Materials

    Graphic: Wilfried Weber

     

    Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. These biohybrid systems were engineered to perform certain functions, such as the counting signal pulses in order to release bioactive molecules or drugs at the correct time, or to detect enzymes and small molecules such as antibiotics in milk. The interdisciplinary team presented their results in some of the leading journals in the field, including Advanced Materials and Materials Today.

  • Bit Data Goes Anti-Skyrmions

    Anti-skyrmions on a racetrack. MPI of Microstructure Physics

    Today’s world, rapidly changing because of “big data”, is encapsulated in trillions of tiny magnetic objects – magnetic bits – each of which stores one bit of data in magnetic disk drives. A group of scientists from the Max Planck Institutes in Halle and Dresden have discovered a new kind of magnetic nano-object in a novel material that could serve as a magnetic bit with cloaking properties to make a magnetic disk drive with no moving parts – a Racetrack Memory – a reality in the near future.

  • Blick in den Anfang des Regenbogens

    Die intensivsten und schnellsten optischen Signale – Blitze aus einem Ultrakurzpulslaser – sind heute das Präzisionswerkzeug der Grundlagenforschung, Automobilindustrie und Augenheilkunde. Ihr Licht unterscheidet sich grundlegend von üblichen, einfarbigen Laserstrahlen: Es besteht aus einem Regenbogenspektrum, und je kürzer der Puls, desto reicher die Farben. Wissenschaftler der Universität Göttingen und der University of California in Los Angeles haben nun erstmals die Entstehung dieses „Regenbogens“ in Echtzeit und mit einer Bildrate von 90 Millionen Schnappschüssen pro Sekunde gefilmt.

  • Breaking Newton's Law

    Physicists have observed an intriguing oscillatory back-and-forth motion of a quantum particle in a one-dimensional atomic gas. Florian Meinert

    In the quantum world, our intuition for moving objects is strongly challenged and may sometimes even completely fail. Experimental physicists of the University of Innsbruck in collaboration with theorists from Munich, Paris and Cambridge have found a quantum particle which shows an intriguing oscillatory back-and-forth motion in a one-dimensional atomic gas. A ripe apple falling from a tree has inspired Sir Isaac Newton to formulate a theory that describes the motion of objects subject to a force. Newton’s equations of motion tell us that a moving body keeps on moving on a straight line unless any disturbing force may change its path. The impact of Newton’s laws is ubiquitous in our everyday experience, ranging from a skydiver falling in the earth's gravitational field, over the inertia one feels in an accelerating airplane, to the earth orbiting around the sun.

  • Breakthrough in Quantum Physics: Reaction of Quantum Fluid to Photoexcitation of Dissolved Particles

    Markus Koch (3rd from left), Bernhard Thaler (4th fro left), head of institute Wolfgang Ernst (far right) and team in the "Femtosecond-Laser-Lab" at the Institute of Experimental Physics at TU Graz. ©Lunghammer - TU Graz

    Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet. In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on processes in molecules and clusters which take place on time scales of picoseconds (10⁻¹² seconds) and femtoseconds (10⁻¹⁵ seconds). Now Koch and his team have achieved a breakthrough in the research on completely novel molecular systems.

  • Breakthrough in spintronics

    Bismuthene film through the scanning tunnelling microscope. The honeycomb structure of the material (blue) is visible. A conducting edge channel (white) forms at the edge of the insulating film. Abbildung: Felix Reis

    It's ultra-thin, electrically conducting at the edge and highly insulating within – and all that at room temperature: Physicists from the University of Würzburg have developed a promising new material. The material class of topological insulators is presently the focus of international solids research. These materials are electrically insulating within, because the electrons maintain strong bonds to the atoms. At their surfaces, however, they are conductive due to quantum effects. 

  • Breakthrough with a chain of gold atoms

    Arists’ view of the quantized thermal conductance of an atomically thin gold contact. Created by Enrique Sahagun

    In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport. The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops. Heat transport is of similar fundamental importance and its control is for instance necessary to efficiently cool the ever smaller chips. An international team including theoretical physicists from Konstanz, Junior Professor Fabian Pauly and Professor Peter Nielaba and their staff, has achieved a real breakthrough in better understanding heat transport at the nanoscale.

  • Brightest Source of Entangled Photon

    Optical setup for experiments with entangled photons at IFW Dresden. Photo: Jürgen Loesel

    Scientists at Leibniz Institute for Solid State and Materials Research Dresden (IFW) and at Leibniz University Hannover (LUH) have developed a broadband optical antenna for highly efficient extraction of entangled photons. With a yield of 37% per pulse, it is the brightest source of entangled photons reported so far.

  • Calculating Quietness

    Perforated sound absorbers for engines. Figure: Schmidt/MATHEON

    Noise bothers people and can cause illness. Researchers are working to dampen the sound directly at the source, for example through perforated walls in engines. Scientists around junior-group leader Dr. Kersten Schmidt from the Berlin research center MATHEON have now developed mathematical models helping to simulate and optimize sound emitters like this considerably faster and with a lower computational effort than before. The engine manufacturers in the region will also benefit from this.