Physics is the study of science that deals with matter, energy, motion, and force through time and space. 
Physics in nanotechnology embodies segments such as quantum computing, laser technology, photonics as some examples.

  • An Acoustic Cage for Electrons

    In a piezo-electric solid (PE), counter-propagating surface-acoustic waves generate a time-dependent, periodic electric potential for electrons confined to a two-dimensional plane, i.e. a two-dimensional electron gas (2DEG); the resulting acoustic lattices are one- or two-dimensional, depending on the geometry of the setup. At high SAW frequencies, the potential can be effectively described by a time-independent pseudo-lattice. The motion of electrons at potential minima can be described by a harmonic oscillator, superimposed by small-amplitude, high-frequency micro-oscillations. (Graphic: from the original publication)

    International team of scientist develops new concept for trapping and manipulating electrons with sound waves. The ability to trap and control electrons and other quasi-particles for the study of isolated single particles as well as many-body systems in a solid-state environment can be of major importance for understanding the behaviour of correlated electrons in technologically relevant materials. Because of their – compared to atoms – extremely small masses, these point-like particles are very fast and mobile. This, however, makes them hard to hold in place.

  • An Atomic Quantum Bit Made Switchable

    Depending on the orientation of an applied magnetic field, quantum tunneling of the magnetisation allows to either freeze or to flip magnetic moments. © University of Augsburg/IfP/EKM

    One bit per atom: Augsburg-based physicists and US colleagues are reaching the ultimate limit for nanoscale data storage

  • An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye

    Predictions from quantum physics have been confirmed by countless experiments, but no one has yet detected the quantum physical effect of entanglement directly with the naked eye. This should now be possible thanks to an experiment proposed by a team around a theoretical physicist at the University of Basel. The experiment might pave the way for new applications in quantum physics.

  • An International Team of Physicists Discovered a Coherent Amplification Effect in Laser Excited Dielectrics

    Copyright: Uni Kassel

    An international team of physicists from the University of Kassel, led by Prof. Thomas Baumert, and the University of Aarhus, led by Prof. Peter Balling, discovered that ultra-short laser pulses are amplified in a laser excited piece of glass. This amplification, similar to a classical laser, is directed and of coherent nature. By utilizing theoretical models and simulations, the researchers were able to understand and reproduce the multi-step process leading to the “Laser Amplification in Excited Dielectrics” (short: LADIE) named effect. Their results were published online in the well-known research journal Nature Physics.

  • An Unlikely Marriage Among Oxides

    Sebastian Siol showing a sample of heterostructural oxides, which could be a promising coating for smart windows. Empa

    Sebastian Siol is looking for new materials with unusual properties that were so far not accessible in experiments. To do this, he connects partners who don't really fit together: One partner forces the other into a state that would not be possible without the unlikely pairing. Siol also makes sure that the crystal bonds last in everyday life. Only then are they interesting for industrial applications.

  • Antiferromagnets Prove their Potential for Spin-Based Information Technology

    Crystal structure of Mn2Au with antiferromagnetically ordered magnetic moments  Ill./©: Libor Šmejkal, JGU

    Physicists at Mainz University demonstrate technologically feasible read-out and writing of digital information in antiferromagnets / Basic principle for ultrafast and stable magnetic memory. Within the emerging field of spin-based electronics, or spintronics, information is typically defined by the orientation of the magnetization of ferromagnets. Researchers have recently been also interested in the utilization of antiferromagnets, which are materials without macroscopic magnetization but with a staggered orientation of their microscopic magnetic moments. Here the information is encoded in the direction of the modulation of the magnetic moments, the so-called Néel vector.

  • Application Offensive for Ultrafast Lasers in the kW Range

    With multi-beam optics, the high laser powers can be used efficiently. © Fraunhofer ILT, Aachen, Germany.

    Experts from 13 different Fraunhofer institutes are working on the development of multi-kW ultrafast lasers and various applications in the Fraunhofer Cluster of Excellence Advanced Photon Sources CAPS. A user facility with application laboratories in Aachen and Jena is being created for this purpose, laboratories in which partners from industry and research can work with the new technology.

  • Artificial Agent Designs Quantum Experiments

    The artificial agent uses optical elements such as this beam splitter to construct new and optimized experiments. Harald Ritsch

    On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

  • Artificially Produced Cells Communicate with Each Other: Models of Life

    First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope. Image: U. Benz / TUM

    Friedrich Simmel und Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, exchange small chemical signaling molecules to trigger more complex reactions, such as the production of RNA and other proteins. Scientists around the world are working on creating artificial, cell-like systems that mimic the behavior of living organisms. 

  • Asymmetric Plasmonic Antennas Deliver Femtosecond Pulses for Fast Optoelectronics

    Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire. Image: Alexander Holleitner / TUM

    A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

  • Atomic precision: technologies for the next-but-one generation of microchips

    Atomic precision technologies for the next but one generation of microchips picture 2 Image 2: The coating of mirrors is carried out with atomic precision at Fraunhofer IOF in Jena. © Fraunhofer IOF, Jena, Germany

    In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

  • Attosecond camera for nanostructures

    Attosecond camera for nanostructures | When laser light interacts with a nanoneedle (yellow), electromagnetic near-fields are formed at its surface. A second laser pulse (purple) emits an electron (green) from the needle, permitting to characterize the near-fields.

    Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

  • Attoseconds Break into Atomic Interior

    After the interaction of a xenon atom with two photons from an attosecond pulse (purple), the atom is ionized and multiple electrons (green balls) are ejected. This two-photon interaction is made possible by the latest achievements in attosecond technology. Graphic: Christian Hackenberger

    A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

  • Auch das Deuteron gibt Rätsel auf: Proton und Deuteron doch kleiner als gedacht?

    Auch das Deuteron gibt Rätsel auf Proton und Deuteron doch kleiner als gedacht picture1 | Karsten Schuhmann und Aldo Antognini an dem Lasersystem, das für die Laserspektroskopie eingesetzt wurde. Foto: Paul Scherrer Institut/Markus Fischer

    Das Deuteron – ein Atomkern aus nur einem Proton und einem Neutron – ist deutlich kleiner als bislang gedacht. Zu diesem Ergebnis kommt eine internationale Forschungsgruppe, die Experimente am Paul Scherrer Institut PSI durchgeführt hat. Dies passt zu einer Studie aus dem Jahr 2010, bei dem dieselbe Forschungsgruppe das Proton vermessen und damit das "Rätsel um den Protonradius" begründet hatte. Nun gibt die Deuterongrösse ein analoges Rätsel auf. Womöglich wird dies zu einer Anpassung der Rydbergkonstante führen. Die Experimente fanden an der weltweit leistungsstärksten Myonenquelle am PSI statt, wo die Forschenden mittels Laserspektroskopie sogenanntes myonisches Deuterium vermassen.

  • Aus zwei mach eins: Wie aus grünem Licht blaues wird

    Aus zwei mach eins Wie aus grünem Licht blaues wird | Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) Abbildung: Michael Oldenburg

    Die Hochkonversion von Photonen ermöglicht, Licht effizienter zu nutzen: Zwei Lichtteilchen werden in ein Lichtteilchen mit höherer Energie umgewandelt. Forscher am KIT haben nun erstmals gezeigt, dass innere Grenzflächen zwischen oberflächengebundenen metallorganischen Gerüstverbindungen (SURMOFs) sich optimal dafür eignen – sie haben aus grünem Licht blaues Licht gemacht. Dieses Ergebnis wurde nun in der Fachzeitschrift Advanced Materials vorgestellt und eröffnet neue Möglichkeiten für optoelektronische Anwendungen wie Solarzellen oder Leuchtdioden. (DOI: 10.1002/adma.201601718)

  • Batterie und Elektronik aus dem Tintenstrahldrucker

    Batterie und Elektronik aus dem Tintenstrahldrucker | Schaltkreise aus dem Tintenstrahldrucker sind so flexibel wie das Papier auf dem sie gedruckt sind.

    Der südkoreanischer Forscher Sang-Young Lee hat einen handelsüblichen Drucker so umgebaut, dass er Energiespeicher und einfache Schaltkreise druckt. Ziel dabei ist, tragbare Technik unsichtbar in beliebigen Bauformen zu integrieren.

    Unter einem Tisch im Labor von Sang-Young Lee befindet sich ein normaler, etwas abgenutzter Tintenstrahldrucker, den er so modifiziert hat, dass er elektronische Schaltkreise und Superkondensatoren produziert. Dazu entleert Lee die Tintenbehälter und befüllt sie mit speziellen Batterie-Materialien und leitfähiger Tinte. Auf behandeltem Papier druckt das Gerät dann flexible, haltbare Superkondensatoren und einfache Schaltkreis-Komponenten, zum Beispiel in Form einer hochaufgelösten Karte der Republik Korea, Blumen oder Logos.

  • Batteries with Better Performance and Improved Safety

    Composition of the solid sodium battery. Empa

    Researchers from Empa and the University of Geneva have developed a prototype of a novel solid sodium battery with the potential to store extra energy. Phones, laptops, electric cars – batteries are everywhere. And to meet the expectations of today’s consumers, these batteries are increasin­gly lighter, more powerful and designed to last longer. Currently the core technology for these applications is lithium ion batteries. But the technology is expensive and contains a flammable liquid, which may represent a safety hazard, when the battery is abused.

  • Battery Research at Graz University of Technology: New Breakthroughs in Research on Super-batteries

    Stefan Freunberger vom Institut für Chemische Technologien von Materialien der TU Graz zählt auf in seinem Forschungsgebiet zu den weltweit führenden Wissenschaftern. © Lunghammer – TU Graz

    Researchers at Graz University of Technology (TU Graz) in Austria have discovered a means of suppressing singlet oxygen formation in lithium-oxygen batteries in order to extend their useful lives. Since 2012, Stefan Freunberger of the Institute for Chemistry and Technology of Materials at TU Graz has been working on development of a new generation of batteries with enhanced performance and longer useful lives, and which are also cheaper to produce than current models. He believes that lithium-oxygen batteries have significant potential. In 2017, in the course of his work, Freunberger uncovered parallels between cell ageing in living organisms and in batteries. In both cases, highly reactive singlet oxygen is responsible for the ageing process.

  • Better tests for Schrödinger cats

    MPQ scientists develop new methods to test the world view of macroscopic realism

    In a classical world, objects have pre-existing properties, physical influences are local and cannot travel faster than the speed of light, and it is in principle possible to measure the properties of macroscopic systems without altering them. This is referred to as local realism and macroscopic realism, and quantum mechanics is in strong contradiction with both of them. While Bell inequalities have been proven to be an optimal tool for ruling out local realism in quantum experiments, Lucas Clemente and Johannes Kofler from the Theory Division of the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany, have now shown that inequalities can never be optimal for tests of macroscopic realism. Their results reveal a hitherto unknown radical difference in the mathematical structures of spatial and temporal correlations in quantum physics, and also provide a better tool for the search of Schrödinger cat-like states (PRL.116.150401, 15. April 2016).

  • Bioimaging - Tiefe Blicke in den Nanokosmos

    Am Biomedizinischen Centrum (BMC) geht die Core Facility Bioimaging, eine Serviceeinheit für lichtmikroskopische Verfahren, offiziell in Betrieb – in einer neuartigen Kooperation mit dem Unternehmen Leica Microsystems.