Physics is the study of science that deals with matter, energy, motion, and force through time and space. 
Physics in nanotechnology embodies segments such as quantum computing, laser technology, photonics as some examples.

  • Further Improvement of Qubit Lifetime for Quantum Computers

    Illustration of the filtering of unwanted quasiparticles (red spheres) from a stream of superconducting electron pairs (blue spheres) using a microwave-driven pump. Philip Krantz, Krantz NanoArt

    New Technique Removes Quasiparticles from Superconducting Quantum Circuits - An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is that the stored data should remain intact for as long as possible. The researchers, including Jülich physicist Dr. Gianluigi Catelani, have developed and tested a technique that removes unpaired electrons from the circuits. These are known to shorten the qubit lifetime (to be published online by the journal Science today.

  • Future Work Lab makes Work 4.0 tangible

    Future Work Lab: Innovation laboratory for work, people and technology  Ludmilla Parsyak © Fraunhofer IAO

    Innovation laboratory for work, people and technology opens at Fraunhofer Campus in Stuttgart

    What is work becoming? In what directions is it developing? How can we best harness the potential of new technologies for our work? As digitalization transforms processes and services as well as factory floors, many new questions arise. The Future Work Lab, which was officially opened today, offers answers and innovative approaches to these issues.

  • Giant Magnetic Fields in the Universe

    Radio map of the relic at the outskirts of the galaxy cluster CIZA J2242+53 in a distance of about two billion light years, observed with the Effelberg radio telescope at 3 cm wavelength. Maja Kierdorf et al., 2017, A&A 600, A18

    Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

    The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

  • Glasbildung durch amorphe Ordnung

    Glasbildung durch amorphe Ordnung | Abbildung "Glasbildung auf molekularer Ebene": Die Temperatur- und Frequenzabhängigkeit der dielektrischen Suszeptibilität fünfter Ordnung, die die Reaktion des Materials - gemessen bei der fünften Oberwelle des angelegten Wechselfeldes - charakterisiert (Graph im Vordergrund), offenbart eine Vergrößerung von Regionen sich gemeinsam bewegender Moleküle beim Übergang von der Flüssigkeit (rechter Kreis) in das feste Glas (linker Kreis). Diese Regionen sind bei hohen Temperaturen in der viskosen Flüssigkeit klein, im festen Glas sind sie groß.

    In einem soeben erschienenen Beitrag im führenden naturwissenschaftlichen Fachjournal "Science" lösen Forscher der Universitäten Augsburg und Paris einen lang anhaltenden Streit über die wahre Natur des Übergangs von der Flüssigkeit in das feste Glas und bestätigen die Theorie, wonach es sich um einen - wenngleich unkonventionellen - Phasenübergang handelt.

  • Goettingen Researchers Combine Light and X-ray Microscopy for Comprehensive Insights

    STED image (left) and x-ray imaging (right) of the same cardiac tissue cell from a rat. University of Goettingen

    Researchers at the University of Goettingen have used a novel microscopy method. In doing so they were able to show both the illuminated and the "dark side" of the cell. The results of the study were published in the journal Nature Communications. (pug) The team led by Prof. Dr. Tim Salditt and Prof. Dr. Sarah Köster from the Institute of X-Ray Physics "attached" small fluorescent markers to the molecules of interest, for example proteins or DNA. The controlled switching of the fluorescent dye in the so-called STED (Stimulated Emission Depletion) microscope then enables highest resolution down to a few billionth of a meter.

  • Going green with nanotechnology

    Reducing the environmental impact of organic solar cell production, building more efficient energy storage: Würzburg-based research institutes have provided for progress in the Bavarian project association UMWELTnanoTECH. Below, we will present their outstanding results.

    Nanotechnology offers many chances to benefit the environment and health. It can be applied to save raw materials and energy, develop enhanced solar cells and more efficient rechargeable batteries and replace harmful substances with eco-compatible solutions.

  • Good Vibrations Feel the Force

    Strong-field mid-infrared excitation allows to drive lattice vibrations of a crystal into the highly anharmonic regime which allows to reconstruct the interatomic potential. Joerg Harms, MPSD

    A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

  • Goodbye, Silicon? On the Way to New Electronic Materials with Metal-organic Networks

    A metal-organic framework could serve as a replacement for the semiconductor silicon in the future. © MPI-P

    Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

  • Graphene aids optical study of dye molecules

    Graphene aids optical study of dye molecules | Figure: Regular arrangements of dye molecules on graphene. Top: The particular dye molecule used in the study. Image reproduced from original publication.

    By using graphene as substrate, dye molecules self-assemble and form monolayers of high regularity. This increases their optical properties significantly.

  • Graphene Enables Clock Rates in the Terahertz Range

    Graphene converts electronic signals with frequencies in the gigahertz range extremely efficiently into signals with several times higher frequency. Juniks/HZDR

    Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

  • GSI Scientists Participate in Top 10 Discovery

    Nuclear clock based on a transition in the atomic nucleus of thorium-229. Copyright: Christoph Düllmann, JGU Mainz

    Scientists from GSI are participants in one of the ten most important discoveries of 2016. A publication by a team of researchers led by the Ludwig-Maximilians-Universität München (LMU) and including scientists and engineers from GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, the Helmholtz Institute Mainz (HIM), and the Johannes Gutenberg University Mainz (JGU) is among the most important breakthroughs in physics in 2016. The team’s work is featured as one of the “2016 Top Ten Breakthroughs of the Year” announced recently in Physics World — the magazine of the British Institute of Physics.

  • Gum metals pave the way for new applications

    Scanning electron microscopy image showing the different phases in the peculiar gum-type titanium alloy.  Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH

    Max Planck scientists discover peculiarities in crystal structure of titanium alloy

    Metals which can be bent as gum pave the way for new industrial applications for example in the aerospace industry. These so-called gum metals exist but the mechanism behind this behaviour was still unsettled and thus difficult to be used for applications. Scientists from the Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf have observed a new phase transformation in a titanium alloy that could further our understanding of exactly this behaviour whereby the term “phase” refers to the crystal structure in which the atoms are arranged.

  • Hannover Messe: Improved Corrosion Protection with Flake-type Particles of Metal-phosphates

    Corrosion protection with flake-type metalphosphate particles. Source: Uwe Bellhäuser; free within this context

    Research scientists at INM developed a special type of flake-type-shaped metal-phosphate particles: They show improved passivation ability and improved diffusion barrier against corrosive substances. Besides zinc phosphate also newly developed manganese phosphate flakes are available.

  • Hannover Messe: Low Haze Structures for Transparent Flexible Electrodes by Electrospinning Processes

    Electrospinning: thin fibers for flexible, transparent electrodes. Source: Use Bellhäuser

    Flexible, transparent, and conductive electrodes (FTCEs) are a key enabling technology for the new generation of flexible, printable and wearable electronics. The touchscreens and displays of the future will be curved and flexible and integrated into cars, phones, or medical technology. Tapping and wiping can only work on flexible devices, when flexible materials are used for touchscreens and electric circuits, but not brittle materials like indium tin oxide or silicon. For this purpose, INM - Leibniz Institute for New Materials is working with the process of electrospinning, a technique that produces ultra-fine fibers that are up to 100 times thinner than a human hair.

  • Hannover Messe: Successful Small-scale Production of New Hybrid Inks

    Flexible electronics with hybrid inks. Source: INM; free within this press release

    Research scientists at INM – Leibniz Institute for New Materials have developed a sinter-free conductive ink based on gold and silver nanoparticles coated with conductive polymers. INM’s hybrid inks enable inkjet printing of conductive structures without any thermal or UV treatments. The inks can be prepared in polar solvents such as water and alcohols, and many of their properties such as their density or viscosity can be customized. Testing samples will be available upon request.

  • Harder 3D-printed tools – Researchers from Dresden Introduce new Process for Hardmetal Industry

    Hardmetal sample with complex geometry on FFF standard printer Hage3D 140 L, in which larger components can be perspectively printed as well. © Fraunhofer IKTS

    Extremely hard tools are required in forming technology, metal-cutting and process engineering. They are conventionally made by powder pressing. Although this achieves a high degree of hardness, it is often necessary to carry out a complex and therefore expensive post-processing. Additive manufacturing enables complex geometries, but has been limited in terms of hardness and component size so far. Researchers at the Fraunhofer IKTS in Dresden have now adapted the 3D printing process Fused Filament Fabrication for hardmetals. The development meets all requirements for the first time.

  • Heart examinations: Miniature particle accelerator saves on contrast agents

    Prof. Franz Pfeiffer and PD Dr. Daniela Münzel at the miniature synchrotron Munich Compact Light Source (MuCLS). Heddergott / TUM

    The most prevalent method for obtaining images of clogged coronary vessels is coronary angiography. For some patients, however, the contrast agents used in this process can cause health problems. A team at the Technical University of Munich (TUM) has now demonstrated that the required quantity of these substances can be significantly reduced if monoenergetic X-rays from a miniature particle accelerator are used.

    Soft tissues such as organs and blood vessels are nearly impossible to examine in X-ray images. To detect a narrowing or other changes in coronary blood vessels, patients are therefore usually injected with an iodinated contrast agent.

  • High Resolution Without Particle Accelerator

    Silvio Fuchs in a laboratory of the Institute of Optics and Quantum Electronics of the Friedrich Schiller University Jena. (Photo: Jan-Peter Kasper/FSU Jena)

    A first for physics – University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale.

    A visit to the optometrist often involves optical coherence tomography. This imaging process uses infrared radiation to penetrate the layers of the retina and examine it more closely in three dimensions, without having to touch the eye at all. This allows eye specialists to diagnose diseases such as glaucoma without any physical intervention.

  • High-speed Quantum Memory for Photons

    Schematic of a quantum network: single photons transmit quantum information between the network nodes, where they are stored in an atomic gas. University of Basel, Department of Physics

    Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

  • High-speed, environmentally friendly laser structuring for tools used in metal foil manufacture

    Laser structuring of metal foil. Source: Fraunhofer IPT

    Cost efficiency coupled with high productivity without any adverse impact on the environment: As part of the EU “PoLaRoll” Project, the Fraunhofer Institute for Production Technology IPT is collaborating with the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT and with partners from industry to develop a module capable of direct laser micro-structuring in a roll-to-roll process. The aim is to produce a sieve-like metal foil which will be used to protect glass facades from the effects of the sun: their special geometry will lower the impact of solar radiation, thereby reducing the amount of energy required in order to cool and ventilate the building.