Physics

Physics is the study of science that deals with matter, energy, motion, and force through time and space. 
Physics in nanotechnology embodies segments such as quantum computing, laser technology, photonics as some examples.

  • Eine Mini-Antenne für die Erzeugung von hochfrequenten Spinwellen

    Eine Mini Antenne für die Erzeugung von hochfrequenten Spinwellen | Das Zentrum eines magnetischen Wirbels sendet unter hochfrequenten magnetischen Wechselfeldern Spinwellen mit sehr kurzen Wellenlängen aus. Abbildung: HZDR

    Im Zuge der rasant fortschreitenden Miniaturisierung steht die Datenverarbeitung mit Hilfe elektrischer Ströme vor zum Teil unlösbaren Herausforderungen. Eine vielversprechende Alternative für den Informationstransport in noch kompakteren Chips sind magnetische Spinwellen. Wissenschaftlern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) ist es nun bei einer internationalen Zusammenarbeit gelungen, Spinwellen mit extrem kurzen Wellenlängen im Nanometer-Bereich – eine entscheidende Eigenschaft für die spätere Anwendung – gezielt zu erzeugen.

  • Eine neue Art von Quanten-Bits: Elektronenlöcher

    Eine neue Art von Quanten Bits Elektronenlöcher picture 1 | Das Team vom Lehrstuhl für Festkörperphysik arbeitet mit winzigen Strukturen. Die Quantenpunkte, die die Forscher um Andreas Wieck erzeugen, sind gerade einmal 30 Nanometer breit. Photo: RUB, Marquard

    Ein Forscherteam aus Deutschland, Frankreich und der Schweiz hat Quanten-Bits, kurz Qubits, in einer neuen Form umgesetzt. Eines Tages könnten diese die Informationseinheiten eines Quantencomputers sein. Bislang hatten die Wissenschaftler Qubits in Form von einzelnen Elektronen realisiert. Das führte jedoch zu Störeffekten und machte die Informationsträger schwer zu programmieren und auszulesen. Dieses Problem beseitigte die Gruppe nun, indem sie Elektronenlöcher statt Elektronen als Qubits nutzte. Das Team berichtet in der Zeitschrift „Nature Materials“.

  • Einstein@Home Discovers First Millisecond Pulsar Visible Only in Gamma Rays

    The entire Gamma-ray sky with the two new pulsars discovered by Einstein@Home. The flags in the insets show the nationalities of the volunteers whose computers found the pulsars. Knispel/Clark/Max Planck Institute for Gravitational Physics/NASA/DOE/Fermi LAT Collaboration

    The distributed computing project Einstein@Home aggregates the computing power donated by tens of thousands of volunteers world wide. In a survey of the gamma-ray sky, this network has now discovered two previously unknown pulsarsd in data from the Fermi space telescope. While all other such millisecond pulsars have also been observed with radio telescopes, one of the two discoveries is the first detectable solely through its pulsed gamma-ray emission. The findings raise hopes of detecting other new millisecond pulsars, e.g., from a predicted population towards the Galactic centre. Scientists from the AEI in Hannover and the MPIfR in Bonn closely collaborated to enable the discoveries.

  • Electrical Fields Drive Nano-Machines a 100,000 Times Faster than Previous Methods

    Electric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Enzo Kopperger / TUM

    Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date. This makes nanobots fast enough to do assembly line work in molecular factories. The new research results will appear as the cover story on 19th January in the renowned scientific journal Science.

  • Electricity from waste heat made possible by ceramics

    Where conventional materials reach their limits, ceramics can display their excellent properties. Functional ceramics – so-called thermoelectric materials – can convert waste heat directly into electricity, for example, in high-temperature processes. At the Hannover Messe 2016, Europe's largest ceramics research institute presents for the first time a system that demonstrates the reliable functionality of thermoelectric ceramic modules developed at Fraunhofer IKTS. (Hall 6, Booth B16)

  • Electro-organic Synthesis that Allows Sustainable and Green Production of Fine Chemicals Developed

    Up to eight different experiments can be simultaneously performed in this screening electrolyzer. Each small plastic cup houses two electrodes. photo/©: Carsten Siering, JGU

    In the cooperative EPSYLON research project funded by the German Federal Ministry of Education and Research, scientists from Johannes Gutenberg University Mainz (JGU) and Evonik Performance Materials GmbH have succeeded in developing a state-of-the-art and innovative electro-organic synthesis. The results of their research, presented in last week's issue of Science Advances, allow the use of electrosynthesis as a trend-setting and sustainable green chemistry for technical applications. The method developed allows the operator to react flexibly to the available supply of electricity. Moreover, the operator no longer has to rely on customized electrolysis apparatuses and can use a wide variety of different equipment.

  • Electron Beam Patterning for High-resolution Full-color OLED Displays

    Probe station with patterned OLEDs in the clean room of Fraunhofer FEP. © Fraunhofer FEP

    OLED microdisplays are increasingly establishing themselves in wearables and data glasses. In order to meet the requirements for higher efficiency, higher contrast, and higher resolutions in these applications, Fraunhofer FEP scientists have developed a new micropatterning approach for OLEDs on silicon substrates. This might eliminate the use of color filters and shadow masks in the future and allow full-color displays to be developed by means of a new process.

  • Electron highway inside crystal

    Step edges on topological crystalline insulators may lead to electrically conducting pathways where electrons with opposite spin spin move in converse directions - any U-turn is prohibited. Picture: Thomas Bathon/Paolo Sessi/Matthias Bode

    Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science. Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was highlighted again as the Royal Swedish Academy of Sciences in Stockholm awarded this year's Nobel Prize in Physics to three British scientists for their research of so-called topological phase transitions and topological phases of matter.

  • Electron Rivers

    Usually, the movement of electrons in a real material is rather different from the flow of water in a river. However, in extraordinary materials like the metal oxide PdCoO2, “electron rivers” can exist, as predicted theoretically over fifty years ago and now demonstrated by scientists from the MPI CPfS.

  • Electronic Highways on the Nanoscale

    In the Laboratory a structured silicon carbide crystal is heated in a preparation chamber of a scanning tunneling microscope, so that small graphene structures can be formed. Photo: TU Chemnitz/Jacob Müller

    For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices. Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely converted to wasted heat. This is not only harmful to the environment, but also limits further miniaturization of electronic components and increase of clock rates. A way out of this dilemma are conductors with no electrical resistance.

  • Engineers at Saarland University Turn Polymer Films into Self-sensing High-tech Actuators

    To showcase their technology at Hannover Messe, the engineers Philipp Linnebach (r.) and Paul Motzki (l.) have come up with a playful way of demonstrating its capabilities. Credit: Oliver Dietze

    They might only be made from thin silicon film, but they can squeeze down hard, deliver a powerful thrust, vibrate or hold any required position. And because they can act as sensors, they are becoming important tools in technical applications. Stefan Seelecke and his team at Saarland University are developing a new generation of polymer film-based engineering components that can be used as continuous switches, self-metering valves, motorless pumps or even as tactile aids for touchscreens. The technology needs neither rare earths nor copper, it is cheap to produce and consumes very little energy and components made using it are astonishingly light.

  • Entanglement Becomes Easier to Measure

    Physicists have developed a new protocol to detect entanglement of many-particle quantum states using a much easier approach. The protocol is particularly interesting for characterizing entanglement in systems involving many particles. These systems could help us not only to improve our understanding of matter but to develop measurement techniques beyond current existing technologies.

  • Entangling Photons from a Quantum Dot in the Telecom C-Band

    Schematic representation of a quantum dot emitting polarization entangled photons. The entanglement is here pictorially represented by the transparent connection between the two photons. Sascha Kolatschek, Universität Stuttgart / IHFG

    A research team of the institute of semiconductor optics and functional interfaces (IHFG) of the University of Stuttgart experimentally verified the generation of polarization-entangled photon pairs in the emission wavelength range of the telecom C-band. The generation of entangled photons, i.e. a non-classical phenomenon which “bounds” the states of two different entities, is a cornerstone for the realization of quantum networks.

  • Entwicklung neuer Entspiegelungen mithilfe nanostrukturierter Schichtmaterialien

    Entwicklung neuer Entspiegelungen mithilfe nanostrukturierter Schichtmaterialien | Halbseitig entspiegelte Linse Photo: W. Oppel, Fraunhofer IOF

    Optische Komponenten begleiten uns in nahezu allen Alltagsanwendungen – von Handykameras über Abstandssensoren in Autos bis hin zu Objektiven für hochauflösende Kameras. Doch ohne Entspiegelung gehen an jeder Grenzfläche einer optischen Komponente mehrere Prozent des Lichtes verloren. Deshalb sind heute insbesondere Systeme aus mehreren Linsen wie z.B. in Fotoapparaten oder Fahrzeugdisplays ohne Antireflex (AR)-Funktion undenkbar. Forschern gelang es nun, erfolgreich eine neue Methode der Entspiegelung mithilfe nanostrukturierter Schichtmaterialien zu entwickeln.

  • Environment Turns Molecule into a Switch

    A flat molecule on a surface comprised of bismuth atoms (blue) and silver atoms (grey). The central manganese atom (red) is capable of changing its position. Graphic: Jens Kügel & Michael Karolak

    For the first time, physicists from the University of Würzburg have successfully positioned an organic molecule on a substrate realizing two stable configurations. This may have application potential in molecular spintronics. It looks like a cross with four arms of equal length that have a central atom at their intersection. All atoms are arranged in one plane so that the molecule is absolutely planar – at least in the normal state.

  • Environmentally Friendly Alternative to Prohibited Hard Chrome Plating Using Chromium(VI)

    World premiere: EHLA system for Laser Material Deposition of piston rods having a length of up to ten meters. © Fraunhofer ILT, Aachen, Germany / Hornet Laser Cladding B.V., Lexmond, NL.

    The strict conditions on the use of chromium(VI) for corrosion and wear protection coatings, which will take effect in the EU in September 2017, hit the manufacturers of highly stressed metal components particularly hard. One such company is IHC Vremac Cylinders B.V. in the Dutch city of Apeldoorn. The hydraulic cylinders it manufactures, which often measure many meters in length, have to withstand rough maritime conditions for years. With its choice of an award-winning alternative to hard chrome plating, this Dutch manufacturer has become the first company in the world to coat its components using the EHLA technique developed by the Fraunhofer Institute for Laser Technology ILT in Aachen.

  • Environmentally Friendly Steel Coatings: Fraunhofer ILT Wins Steel Innovation Award

    On June 13, 2018, the Fraunhofer ILT team took 2nd place at the Steel Innovation Awards in Berlin in the “Steel in Research and Development” category for their EHLA process. © Fraunhofer ILT, Aachen, Germany.

    Once every three years, the German steel industry presents its Steel Innovation Awards. The purpose of this initiative is to recognize innovations that are helping to ensure this material remains a viable choice for the long term. The jury considers not just products made from steel, but also innovative processes such as Extreme High-speed Laser Material Deposition (EHLA). For the development of the EHLA process, researchers from the Fraunhofer Institute for Laser Technology ILT in Aachen won the Joseph von Fraunhofer Prize in 2017. On June 13, 2018, the researchers were honoured with the 2nd Prize of the Steel Innovation Award in the “Steel in Research and Development” category.

  • ERC Grant: Nanopartikel-Katalysatoren in Form bringen

    Beatriz Roldán Cuenya erhält eine renommierte Förderung vom Europäischen Forschungsrat. © RUB, Marquard

    Prof. Dr. Beatriz Roldán Cuenya von der Ruhr-Universität Bochum (RUB) erhält einen der renommierten Consolidator Grants vom Europäischen Forschungsrat (ERC). Die Förderung beläuft sich auf zwei Millionen Euro für fünf Jahre. Die Wissenschaftlerin strebt an, mit den Mitteln neue Einblicke in die katalytischen Fähigkeiten von Nanopartikeln zu gewinnen, insbesondere wie sich Größe, Form und chemischer Zustand der Partikel während einer katalytischen Reaktion ändern. Winzige Metallpartikel, gerade einmal 1 bis 50 Nanometer groß, können als Katalysatoren für verschiedene Reaktionen dienen. Mehrere Parameter beeinflussen die katalytische Aktivität der Nanopartikel: ihre Größe und Form, das Trägermaterial, an das die Partikel gebunden sind, die Umgebung sowie der chemische Zustand der Partikel, also zum Beispiel ob sie als reines Metall oder als Oxid vorliegen.

  • Error-Free into the Quantum Computer Age

    Quantum error correction protocols detect and correct processing errors in trapped-ion quantum computers. IQOQI Innsbruck/Harald Ritsch

    A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors. In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means they need to consist of a considerably higher number of quantum bits. Second, they have to be capable of processing errors.

  • Essential Quantum Computer Component Downsized by Two Orders of Magnitude

    The new nonreciprocal device acts as a roundabout for photons. Here, arrows show the direction of photons propagation. IST Austria/Birgit Rieger

    Researchers at IST Austria have built compact photon directional devices. Their micrometer-scale, nonmagnetic devices route microwave photons and can shield qubits from harmful noise. Qubits, or quantum bits, are the key building blocks that lie at the heart of every quantum computer. In order to perform a computation, signals need to be directed to and from qubits. At the same time, these qubits are extremely sensitive to interference from their environment, and need to be shielded from unwanted signals, in particular from magnetic fields. It is thus a serious problem that the devices built to shield qubits from unwanted signals, known as nonreciprocal devices, are themselves producing magnetic fields.