Photonics

Photonics is science of light generation, detection, and manipulation through emission, transmission, modulation, signal processing, switching, amplification, and detection/sensing.

Photonic methods are applied in various areas including telecommunication, Product Identification systems, Medicine, Industrial manufacturing, aviation and military among others.

  • “Molecular Bicycle Pedal”: Researchers Present Molecular Switch

    Cover Picture: Photoinduced Pedalo-Type Motion in an Azodicarboxamide-Based Molecular Switch (Angew. Chem. Int. Ed. 7/2018) © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Just like a bicycle pedal that can be turned forwards and backwards – this is how the new molecular switch can be described which Dr. Saeed Amirjalayer, from the University of Münster’s Institute of Physics, and his co-authors have now presented in the journal “Angewandte Chemie” (“Applied Chemistry”). The pedal motion is triggered by light.

  • A Nano-Roundabout for Light

    Functional principle of a nano-roundabout.  © TU Wien

    At TU Wien, it was possible to create a nanoscale optical element that regulates the flow of light particles at the intersection of two glass fibers like a roundabout. A single atom was used to control the light paths. Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. For this purpose, the two glass fibers were coupled at their intersection point to an optical resonator, in which the light circulates and behaves as in a roundabout. The direction of circulation is defined by a single atom coupled to the resonator. The atom also ensures that the light always leaves the roundabout at the next exit. This rule is still valid even if the light consists merely of individual photons. Such a roundabout will consequently be installed in integrated optical chips – an important step for optical signal processing.

  • A New Knob to Control and Create Higher Harmonics in Solids

    When exciting crystals such as silicon by an intense elliptically or circularly polarized light pulse (red), circularly polarized higher harmonics (green & blue) can be generated. Nicolas Tancogne-Dejean + Joerg M. Harms, MPSD

    Scientists at the MPSD and CFEL have demonstrated the possibility of using a new knob to control and optimize the generation of high-order harmonics in bulk materials, one of the most important physical processes for generating high-energy photons and for the ultrafast manipulation of information.

  • A Quantum Low Pass for Photons

    Illustration of the two-photon blockade. Top: Irradiated by a laser pulse a single atom in free space can absorb and emit only one photon at a time, without constraints on the direction of the photons. Middle: A system consisting of a cavity can absorb and emit an unlimited number of photons. Below: In case of the strongly coupled atom-cavity system the frequency of the laser light can be chosen such that the system can store and emit two photons at maximum. MPQ, Quantum Dynamics Division

    Physicists in Garching observe novel quantum effect that limits the number of emitted photons. The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called Poisson-distribution. There are, however, light sources with non-classical photon number distributions that can only be described by the laws of quantum mechanics. A well-known example is the single-photon source that may find application in quantum cryptography for secret key distribution or in quantum networks for connecting quantum memories and processors. However, for many applications in nonlinear quantum optics light pulses with a certain fixed number of photons, e.g. two, three or four, are highly desirable.

  • A quantum walk of photons

    An electron microscope image of a so-called micropillar with an integrated quantum dot that is capable of emitting single photons.  Photo: Chair for Applied Physics, University of Würzburg

    Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

    The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer. Therefore, it is expected to work out problems in the not too far future which are virtually impossible to solve by classical supercomputers. Physicists refer to this as "quantum computational supremacy".

  • A signal boost for molecular microscopy

    A signal boost for molecular microscopy | Schematic illustration of the experiment. Graphic: MPQ, Laser Spectroscopy Division

    Cavity-enhanced Raman-scattering reveals information on structure and properties of carbon nanotubes. The inherently weak signals are amplified by using special micro cavities as resonator, giving a general boost to Raman spectroscopy as a whole.

  • Aachen Center for 3D Printing: Official launch of the world’s largest SLM facility

    On June 1, 2017, the world’s largest selective laser melting (SLM) facility for metal components was inaugurated at the new Digital Photonic Production industry building on the RWTH Aachen Campus. Concept Laser GmbH

    For their joint project, the Aachen Center for 3D printing, the Aachen University of Applied Sciences and the Fraunhofer Institute for Laser Technology ILT have ambitious plans. On June 1, 2017, they officially opened the world’s largest SLM facility, located in the new Digital Photonic Production industry building on the RWTH Aachen campus. Concept Laser’s new XLine 2000R selective laser melting system plays a pivotal role in the SLM-XL research project, which is intended to accelerate and optimize the entire manufacturing process for large, metal components.

    Scientists are working closely with the Digital Photonic Production research campus, which is located in the same building and funded by the German Federal Ministry of Education and Research (BMBF).

  • Added Disorder Drives Transition to Photonic Topological Insulator

    A honeycomb waveguide structure with helical waveguides acts as a photonic topological insulator so that light is guided along the surface. Copyright: University of Rostock/Alexander Szameit, Lukas Maczewsky

    As the journal Nature reported recently, a research group led by the Rostock physicist Professor Alexander Szameit, in collaboration with colleagues in Israel and the U.S., experimentally demonstrated that a messy topological insulator can be restored in its properties by inducing random disorder.

  • Attoseconds Break into Atomic Interior

    After the interaction of a xenon atom with two photons from an attosecond pulse (purple), the atom is ionized and multiple electrons (green balls) are ejected. This two-photon interaction is made possible by the latest achievements in attosecond technology. Graphic: Christian Hackenberger

    A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

  • Aus zwei mach eins: Wie aus grünem Licht blaues wird

    Aus zwei mach eins Wie aus grünem Licht blaues wird | Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) Abbildung: Michael Oldenburg

    Die Hochkonversion von Photonen ermöglicht, Licht effizienter zu nutzen: Zwei Lichtteilchen werden in ein Lichtteilchen mit höherer Energie umgewandelt. Forscher am KIT haben nun erstmals gezeigt, dass innere Grenzflächen zwischen oberflächengebundenen metallorganischen Gerüstverbindungen (SURMOFs) sich optimal dafür eignen – sie haben aus grünem Licht blaues Licht gemacht. Dieses Ergebnis wurde nun in der Fachzeitschrift Advanced Materials vorgestellt und eröffnet neue Möglichkeiten für optoelektronische Anwendungen wie Solarzellen oder Leuchtdioden. (DOI: 10.1002/adma.201601718)

  • Bern-made laser altimeter taking off to Mercury

    The BepiColombo Laser Altimeter (BELA) University of Bern / Ramon Lehmann

    University of Bern’s Laser Altimeter BELA has been successfully tested during the last weeks and the last components will be delivered to ESA on 5 October. The first laser altimeter for inter-planetary flight to be built in Europe is part of the ESA BepiColombo mission to Mercury. Starting in 2024, it will provide data about the planet’s surface.

  • Brightest Source of Entangled Photon

    Optical setup for experiments with entangled photons at IFW Dresden. Photo: Jürgen Loesel

    Scientists at Leibniz Institute for Solid State and Materials Research Dresden (IFW) and at Leibniz University Hannover (LUH) have developed a broadband optical antenna for highly efficient extraction of entangled photons. With a yield of 37% per pulse, it is the brightest source of entangled photons reported so far.

  • Bug-proof communication with entangled photons

    Fraunhofer IOF‘s quantum source. Designed to be fully operational even after extreme stress. Fraunhofer IOF

    Due to the rapidly growing processing power of computers, conventional encryption of data is becoming increasingly insecure. One solution is coding with entangled photons. Fraunhofer researchers are developing a quantum coding source that allows the transport of entangled photons from satellites, thereby making an important step in the direction of tap-proof communication. In addition to the quantum source, researchers from various Fraunhofer institutes will be presenting other exciting optoelectronic exhibits at the LASER World of Photonics trade fair in Munich from June 26 - 29, 2017 (Hall A2, Booth 431 and Hall B3, Booth 327).

  • Carbon Nanotubes Couple Light and Matter

    The formation of exciton-polaritons through strong light-matter coupling is a promising strategy for producing electrically pumped carbon-based lasers. Scientists from Heidelberg University and the University of St Andrews (Scotland) have now, for the first time, demonstrated this strong light-matter coupling in semiconducting carbon nanotubes. Figure: Arko Graf (Heidelberg University)

    Scientists from Heidelberg and St Andrews work on the basics of new light sources from organic semiconductors. With their research on nanomaterials for optoelectronics, scientists from Heidelberg University and the University of St Andrews (Scotland) have succeeded for the first time to demonstrate a strong interaction of light and matter in semiconducting carbon nanotubes. Such strong light-matter coupling is an important step towards realising new light sources, such as electrically pumped lasers based on organic semiconductors. They would be, amongst other things, important for applications in telecommunications. These results are the outcome of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte Gather (St Andrews), and have been published in “Nature Communications”.

  • Concepts for new Switchable Plasmonic Nanodivices

    Configuration of a switchable plasmonic router consisting of a T-shaped metallic waveguide surrounded by a ferromagnetic dielectric material and under the action of an external magnetic field. Fig. MBI

     

    Plasmonic waveguides open the possibility to develop dramatically miniaturized optical devices and provide a promising route towards the next-generation of integrated nanophotonic circuits for information processing, optical computing and others. Key elements of nanophotonic circuits are switchable plasmonic routers and plasmonic modulators.

  • Controlled Coupling of Light and Matter

    Artistic representation of a plasmonic nano-resonator realized by a narrow slit in a gold layer. Upon approaching the quantum dot (red) to the slit opening the coupling strength increases. Image: Heiko Groß

    Publishing in a journal like Science Advances usually heralds a particularly exciting innovation. Now, physicists from the Julius-Maximilians-Universität Würzburg (JMU) in Germany and Imperial College London in the UK are reporting controlled coupling of light and matter at room temperature. This achievement is particularly significant as it builds the foundations for a realization of practical photonic quantum technologies.

  • Developing Reliable Quantum Computers

    Illustration: Quantum Optics and Statistics, University of Freiburg

    International research team makes important step on the path to solving certification problems. Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to ensure it is working reliably? Depending on the algorithmic task, this could be an easy or a very difficult certification problem.

  • Diamond Lenses and Space Lasers at Photonics West

    Image 1: This laser cutting head with diamond optics features built-in water cooling and shielding gas supply; diamond lenses reduce its weight by 90%. © Fraunhofer ILT, Aachen, Germany.

    San Francisco's Photonics West, the world's premier optics and photonics trade fair, aims to bring together science and industry once again in 2018. Fraunhofer Institute for Laser Technology ILT will be putting on an effective demonstration of how to converge the two. The Aachen-based company's booth in the German Pavilion is primed to showcase cutting-edge technology, such as a 90% lighter laser cutting head and a laser platform for space applications. Photonics experts from around the world will make their annual pilgrimage to San Francisco in late January.

  • Efficiency Boost for Laser Cutting and Drilling at LASER CHINA

    © Photo Fraunhofer ILT, Aachen, Germany / Volker Lannert.  A programmable multi-beam optics with galvanometer scanner can split the laser into any number of beamlets. The resulting pattern can be changed and positioned anywhere on the workpiece.

    The Chinese market for industrial laser technology is still growing fast and so does the LASER World of PHOTONICS CHINA, which has become the most visited trade show for lasers and optical components. At this year’s trade show, the Fraunhofer Institute for Laser Technology ILT will be presenting new ideas for industrial laser applications, most of which are focused on increased efficiency of laser micro machining processes (Hall N4, Booth 4243).

  • Electric field shakes a magnet in one trillionth of a sec. Novel method of spin control discovered

    An intense THz pulse (red waveform) changes the electronic orbitals of a magnetic material leading to oscillation of spins (compass needles). Dr. Rostislav Mikhaylovskiy

    An international team of scientists from Germany, the Netherlands and Russia has successfully demonstrated a novel, highly efficient and ultrafast magnetization control scheme by employing electromagnetic waves oscillating at terahertz frequencies. The new concept will be published in the upcoming issue of Nature Photonics.