Nanostructuring refers to the design, manipulation and manufacturing of Nano structures.

  • Active Implants: How Gold Binds to Silicone Rubber

    Thin film preparation scheme. a) Cross section of the organic molecular beam deposition setup for the fabrication of soft multi-layer nanostructures under ultra-high vacuum conditions. In situ spectroscopic ellipsometry at an incident angle of 20° simultaneously monitors film thickness, optical properties, and plasmonics. Representative schemes of thermally grown soft nanostructures: b) self-assembled Au particles bound to bi-functional, thiol-terminated PDMS; c) wrinkled Cr/PDMS; d) Au nanoparticles on a PDMS membrane. Coherent electron oscillations occur if the nanoparticles become excited at the resonance frequency. Due to the incident 4 × 10 mm2 beam dimension, SE monitors nanostructures over a macroscopic area. (© Wiley-VCH Verlag)

    Flexible electronic parts could significantly improve medical implants. However, electroconductive gold atoms usually hardly bind to silicones. Researchers from the University of Basel have now been able to modify short-chain silicones in a way, that they build strong bonds to gold atoms. The results have been published in the journal «Advanced Electronic Materials».

    Ultra-thin and compliant electrodes are essential for flexible electronic parts. When it comes to medical implants, the challenge lays in the selection of the materials, which have to be biocompatible. Silicones were particularly promising for application in the human body because they resemble the surrounding human tissue in elasticity and resilience. Gold also poses an excellent electrical conductivity but does only weakly bind to silicone, which results in unstable structures.

  • Block Copolymer Micellization as a Protection Strategy for DNA Origami

    Polyplex Abstract. cfaed

    Scientists from the Center for Advancing Electronics Dresden / TU Dresden and the University of Tokyo led by Dr. Thorsten-Lars Schmidt (cfaed) developed a method to protect DNA origami structures from decomposition in biological media. This protection enables future applications in nanomedicine or cell biology. The precise positioning of individual molecules with respect to one another is fundamentally challenging. DNA Nanotechnology enables the synthesis of nanometer-sized objects with programmable shapes out of many chemically produced DNA fragments.

  • Color Effects from Transparent 3D-printed Nanostructures

    Light hits the 3D-printed nanostructures from below. After it is transmitted through, the viewer sees only green light—the remaining colors are redirected. Thomas Auzinger

    Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and certain color effects are impossible to achieve. The natural world, however, also exhibits structural coloration, where the microstructure of an object causes various colors to appear. Peacock feathers, for instance, are pigmented brown, but—because of long hollows within the feathers—reflect the gorgeous, iridescent blues and greens we see and admire.

  • Electron Correlations in Carbon Nanostructures

    The graphene nanoribbon (center) consists of a single layer of honeycomb carbon atom and has different electrical properties depending on its shape and width. Jan-Philip Joost, AG Bonitz


    New materials are needed to further reduce the size of electronic components and thus make devices such as laptops and smartphones faster and more efficient. Tiny nanostructures of the novel material graphene are promising in this respect. Graphene consists of a single layer of carbon atoms and, among other things, has a very high electrical conductivity. However, the extreme spatial confinement in such nanostructures influences strongly their electronic properties. A team led by Professor Michael Bonitz of the Institute for Theoretical Physics and Astrophysics (ITAP) at Kiel University has now succeeded in simulating the detailed behavior of electrons in these special nanostructures using an elaborate computational model. This knowledge is crucial for the potential use of graphene nanostructures in electronic devices.

  • Gum metals pave the way for new applications

    Scanning electron microscopy image showing the different phases in the peculiar gum-type titanium alloy.  Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH

    Max Planck scientists discover peculiarities in crystal structure of titanium alloy

    Metals which can be bent as gum pave the way for new industrial applications for example in the aerospace industry. These so-called gum metals exist but the mechanism behind this behaviour was still unsettled and thus difficult to be used for applications. Scientists from the Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf have observed a new phase transformation in a titanium alloy that could further our understanding of exactly this behaviour whereby the term “phase” refers to the crystal structure in which the atoms are arranged.

  • Hannover Messe: Gecomer®-Technology shows its performance in endurance tests

    Experimental set-up for endurance tests of Gecomer® structures. Source: Ollmann

    Researchers at the Leibniz Institute for New Materials (INM) have demonstrated the performance of their technology in endurance tests: Even after 500,000 testing cycles the dry adhesive structures work reliable. Thus, the next step towards industrial application is done.

    Components with highly sensitive surfaces are used in automotive, semiconductor, display and optical technologies. During production, these parts have to be handled repeatedly by pick-and-place processes. The proprietary Gecomer® principle reduces the risk of surface contamination with residues, and of mechanical damage due to gripping.

  • Kalkalgen: Baumeister der Nanowelt

    Kalkalgen Baumeister der Nanowelt picture1 | Die Kalkalge Pleurochrysis carterae Aufnahme: André Scheffel u. Damien Faivre / MPI für molekulare Pflanzenphysiologie

    Kalkalgen, Muscheln, aber auch Seeigel und Seesterne sind Baumeister der Nanowelt: Nur mit Kalk, Proteinen und Zuckern erschaffen sie präzise geformten Strukturen. Wissenschaftler der Potsdamer Max-Planck-Institute für molekulare Pflanzenphysiologie und für Kolloid- und Grenzflächenforschung haben nun einen entscheidenden Mechanismus entdeckt, wie eine Kalkalge die filigranen Konstruktionen erzeugt. Die Erkenntnisse könnten auch für andere Produkte der Biomineralisation etwa in Knochen oder Zähnen relevant sein, und sie könnten sich sogar technisch nutzen lassen.

  • Kiel nano research at the Hannover Messe

    In various areas of application for surface processing plasma jets are used wheter for disinfection, bleaching of teeth or coating processes. Foto: Julia Siekmann/CAU

    Minuscule details with a massive impact: For the first time the research focus Kiel Nano, Surface and Interface Science (KiNSIS) of Kiel University (CAU) will show at the Hannover Messe how cutting-edge research from Kiel produces a range of potential applications for industry. Together with the three other research focus areas at the CAU, KiNSIS will show examples of nanoscience and surface research from the Kiel laboratories in Hall 2, "Research & Technology". Lectures on current research topics complement the programme from 24 to 28 April 2017.

  • Machine Learning Helps Improving Photonic Applications

    Here, stripes with local field maxima are formed, so that quantum dots shine particularly strongly. Carlo Barth / HZB

    Photonic nanostructures can be used for many applications, not just in solar cells, but also in optical sensors for cancer markers or other biomolecules, for example. A team at HZB using computer simulations and machine learning has now shown how the design of such nanostructures can be selectively optimised. The results are published in Communications Physics.

  • Manipulating superconducting plasma waves with terahertz light

    Manipulating superconducting plasma waves with terahertz light | Josephson plasma wave in a layered superconductor, parametrically amplified through a strong terahertz light pulse. Image: J.M. Harms/MPI for the Structure and Dynamics of Matter

    Terahertz illumination amplifies Josephson plasma waves in high temperature superconductors, potentially paving the way for stabilizing fluctuating superconductivity

    Most systems in nature are inherently nonlinear, meaning that their response to any external excitation is not proportional to the strength of the applied stimulus. Nonlinearities are observed, for example, in macroscopic phenomena such as the flow of fluids like water and air or of currents in electronic circuits. Manipulating the nonlinear behavior is therefore inherently interesting for achieving control over several processes. An international team of researchers led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg utilized the nonlinear interaction between a terahertz light field and a superconducting plasma wave in a high temperature cuprate superconductor to amplify the latter. This resulted in a more coherent superconductor, which is less susceptible to thermal fluctuations. Due to the non-dissipative superconducting nature of the plasma wave, the study opens up new avenues for “plasmonics”, a field of science utilizing plasma waves for transmitting information. These findings are reported in the journal Nature Physics.

  • Maßgeschneiderte Spitzen für Rasterkraftmikroskope dank Nano-3D-Druck

    Maßgeschneiderte Spitzen für Rasterkraftmikroskope dank Nano 3D Druck picture2 | Optimal an spezielle Anforderungen angepasste Sondenspitzen für Rasterkraftmikroskope können nun am KIT mittels Nano-3D-Druck hergestellt werden. Aufnahme: KIT

    Rasterkraftmikroskope machen die Nanostruktur von Oberflächen sichtbar. Ihre Sonden tasten das Untersuchungsmaterial dazu mit feinsten Messnadeln ab. Am KIT ist es nun gelungen, den Messnadeln eine maßgeschneiderte Form zu geben. So kann eine passende Messspitze für jede Messaufgabe hergestellt werden, etwa für verschiedenartige biologische Proben. Möglich macht dies die 3D-Laserlithografie, also ein 3D-Drucker für Strukturen in Nanometer-Größe. Die Fachpublikation Applied Physics Letters widmet diesem Erfolg nun ihre Titelseite. DOI: 10.1063/1.4960386

  • Meteoriteneinschlag im Nano-Format

    Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

  • Molecular Multitools

    Schematic illustration of the visible-light-controlled reconfigurable surface functions. © MPI-P

    The functionalization of surfaces with different physical or chemical properties is a key challenge for many applications. For example, the defined structuring of a surface with hydrophobic and hydrophilic areas can be used for the separation of emulsions, like water and oil. However, the creation of user-defined surface properties is a challenge. Researches from the Max Planck Institute for Polymer Research in Mainz (MPI-P), the University of Science and Technology of China in Hefei and the University of Electronic Science and Technology in Chengdu (China) have now developed surfaces that can easily be patterned with different functionalities using visible light.

  • Molekularelektronik: Sanftes Entkoppeln legt Nanostrukturen frei

    Molekularelektronik Sanftes Entkoppeln legt Nanostrukturen frei | Jodatome (lila) wandern zwischen das organische Netz und die metallische Unterlage und reduzieren die Haftung. IFM, University of Linköping

    Am Synchrotronspeicherring BESSY II des Helmholtz-Zentrum Berlin (HZB) hat ein internationales Team einen raffinierten Weg gefunden, um organische Nanostrukturen von Metalloberflächen abzukoppeln. Die Messungen belegen: Durch Einschleusen von Jod erhält man ein Netz aus organischen Molekülen, die fast wie ein freistehendes Netz erscheinen. Dies könnte ein Weg sein, um Nanostrukturen von Metalloberflächen auf andere Oberflächen zu übertragen, die sich besser für molekulare Elektronik eignen. Die Ergebnisse sind in der Zeitschrift „Angewandte Chemie“ publiziert.

  • Nanoanalytik: 4,5 Mio. € für Naturwissenschaftliches und Medizinisches Institut (NMI) Reutlingen

    Computermodell stabiler Nanoknospen-Strukturen.

    Das Wirtschaftsministerium Baden-Württemberg fördert am Naturwissenschaftlichen und Medizinischen Institut (NMI) der Universität Tübingen in Reutlingen ein Forschungs- und Dienstleistungszentrum für hochauflösende Nanoanalytik mit 4,5 Millionen Euro. „Das neue Nanoanalytikzentrum sorgt in der Region für einen Innovationsschub im Bereich der Materialwissenschaft und Werkstofftechnik“, so der Amtschef des Wirtschaftsministeriums, Ministerialdirektor Hubert Wicker, bei der Übergabe des Förderbescheids am Donnerstag (24. November). Das Naturwissenschaftliche und Medizinische Institut (NMI) errichtet mit Fördermitteln der EU und des Landes in direkter räumlicher Nachbarschaft ein modernes Forschungs- und Dienstleistungszentrum für hochauflösende Nanoanalytik in materialwissenschaftlich und werkstofftechnisch orientierten Technologiefeldern. Dafür erhält das NMI insgesamt rund 3,2 Millionen Euro aus dem Europäischen Fonds für regionale Entwicklung (EFRE) und rund 1,3 Millionen Euro aus Landesmitteln.

  • Nanomagnetism in X-ray Light

    Left: X-ray microscope image of a magnetic skyrmion. Right: Snapshot of the spin waves generated by a magnetic plate excited by microwaves (red: magnetization fully directed upward, blue: downward). © MPI-IS Stuttgart

    Today’s most advanced scanning X-ray microscope is operated by the Max Planck Institute for Intelligent Systems at Helmholtz Zentrum Berlin.
    The MAXYMUS scanning X-ray microscope has its home at Berlin’s synchrotron radiation source BESSY II at Helmholtz Zentrum Berlin. Scientific support is provided by Dr. Markus Weigand from the “Modern Magnetic Systems” department at the Max Planck Institute for Intelligent Systems (MPI-IS) under the management of Professor Dr. Gisela Schütz. MAXYMUS stands for “MAgnetic X-raY Micro and UHV Spectroscope”. The special fea-tures of this scanning X-ray microscope are its variable specimen environment and broad application spectrum. “It makes it possible to observe ultra-fast processes at 20 times better resolution compared to an optical microscope,” explains Professor Dr. Gisela Schütz.

  • Nanostructured Alloying with Oxygen

    Dr. Jazmin Duarte did atom probe measurements to characterize the oxigen distribution in the alloy. Max-Planck-Institut für Eisenforschung GmbH


    Severe plastic deformation and powder processing techniques are used to produce nanostructured materials with tailor-made compositions and without the effort of precasting. They allow the production of novel metallic nanocrystalline materials by mechanically alloying immiscible elements. Oxide contamination during the processing of these powders still hinders this method to be applied in industry comprehensively. Meanwhile it is also known that oxygen could be used beneficially to influence morphology, mechanical properties and thermal stability of nanostructured alloys.

  • Nanostructures Made of Pure Gold

    Nanostructure made of gold.

    It is the Philosopher’s Stone of Nanotechnology: using a technological trick, scientists at TU Wien (Vienna) have succeeded in creating nanostructures made of pure gold.The idea is reminiscent of the ancient alchemists’ attempts to create gold from worthless substances: Researchers from TU Wien (Vienna) have discovered a novel way to fabricate pure gold nanostructures using an additive direct-write lithography technique. An electron beam is used to turn an auriferous organic compound into pure gold. This new technique can now be used to create nanostructures, which are needed for many applications in electronics and sensor technology. Just like with a 3D-printer on the nanoscale, almost arbitrary shapes can be created.

  • Neue Forschergruppe am IPHT manipuliert Licht mit Nanoantennen

    Prof. Jer-Shing Huang. Foto: privat

    Prof. Dr. Jer-Shing Huang leitet am Leibniz Institut für Photonische Technologien Jena (IPHT) seit dem 1. November die neue Forschergruppe „Nanooptik“. Mit Hilfe winzig kleiner Antennenstrukturen beeinflusst er die Wechselwirkung von Licht und Materie im Nanobereich. Nanostrukturen aus Metall oder Halbleitermaterialien wirken wie optische Antennen, die das eingestrahlte Licht einfangen und auf einen wenige Nanometer kleinen Raum an ihrer Oberfläche zwängen. Da dieses oberflächennahe Lichtfeld etwa die gleiche Größe wie manche Moleküle besitzt, finden Wechselwirkungen zwischen dem Licht und diesen Molekülen statt, die ohne die Antennen nicht möglich wären. Prof. Huang untersucht und steuert die grundlegenden Prozesse dieser Wechselwirkung im Nanobereich.

  • Neues Licht dank Nanostrukturen

    Neues Licht dank Nanostrukturen © Universität Duisburg Essen

    Künftig sollen sie das Innere der Handtasche erhellen oder abendliche Jogger aus dem Dunklen hervorheben: Lichtemittierende elektrochemische Zellen, LECs, bieten gegenüber den bekannten LEDs viele Vorteile, aber noch hapert es – ja, am rechten Licht. Bisher sind nur gelb leuchtende LECs geeignet für den realistischen Einsatz. Für neutraleres Licht braucht man aber mindestens eine weitere Lichtfarbe. Forscher vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) konnten nun erstmals die Farbe gezielt verändern und gleichzeitig die Leistungsfähigkeit der LECs steigern.