Molecules

  • “Molecular Bicycle Pedal”: Researchers Present Molecular Switch

    Cover Picture: Photoinduced Pedalo-Type Motion in an Azodicarboxamide-Based Molecular Switch (Angew. Chem. Int. Ed. 7/2018) © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Just like a bicycle pedal that can be turned forwards and backwards – this is how the new molecular switch can be described which Dr. Saeed Amirjalayer, from the University of Münster’s Institute of Physics, and his co-authors have now presented in the journal “Angewandte Chemie” (“Applied Chemistry”). The pedal motion is triggered by light.

  • 8 applications of nanocoatings

    Waterproof coating

    Nanocoating is the result of an application where nano structures build a consistent network of molecules on a surface. This entails the chemical process where the surface can be designed to become (super) hydrophobic or hydrophilic for example. Nanocoating is a growing line and some of its applications are already in use whereas many more, with great potential, are being researched on. In this article we will look at the top 8 applications of nanocoating that is currently being used.

  • A CLOUD of possibilities: Finding new therapies by combining drugs

    Immunofluorescence analysis of prostate cancer cells treated with 15mM flutamide, 35 µM PPC or the combination for 24 h. Scale Bar 20 µM  © Nature Chemical Biology / Stefan Kubicek

    The CeMM Library of Unique Drugs (CLOUD) is the first condensed set of FDA-approved drugs representing the entire target and chemical space of all clinical compounds. Its potential was shown in a combinatorial high throughput screen at the CeMM chemical screening platform, published in Nature Chemical Biology: by testing all CLOUD compounds in combination with each other, a pair of hitherto unrelated drugs proved to be highly effective against multiple prostate cancer cell lines known for their resistance to therapy. Testing CLOUD combinations in this highly automated procedure could pave the way for a new era of drug repurposing and provide novel strategies for personalized medicine.

  • A New T-cell Population for Cancer Immunotherapy

    Picture of a healthy human T-cell.

    Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

    T lymphocytes (short T cells) are a special type of cells that recognize germs and protect our body from infections. Their second important job is to ride the body of harmed cells, such as tumor cells. T cells are able to identify tumor cells because they look different than normal healthy cells. The way in which they do this is governed by surface expression of T-cell receptors (TCR). Each receptor interacts with a specific molecule on the surface of the target cell.

  • Analysis of Complex Protein Interactions

    Structure of the HBZ protein. Based on PyMOL rendering of PDB.

    The composition of specific functional protein complexes in their cellular environment can now be analysed with unprecedented resolution. The team led by junior group leader Dr Julien Béthune at Heidelberg University Biochemistry Center has developed a new technique which allows the scientists to overcome a long-standing hurdle in molecular cell biology. The method called “split-BioID” allows them to analyse context-dependent protein complexes which could not be identified previously.

  • Bacteria supply their allies with munitions

    Vibrio cholerae bacteria (green) recycle T6SS proteins of the attacking sister cells (red) to build their own spear gun (light green intracellular structure). (Image: University of Basel, Biozentrum)

    Bacteria fight their competitors with molecular spear guns, the so-called Type VI secretion system. When firing this weapon they also unintentionally hit their own kind. However, as researchers from the University of Basel’s Biozentrum report in the journal Cell, the related bacteria strains benefit from coming under fire. They recycle the protein components of the spear guns and use these to build their own weapons.

  • Bioabbaubare Polymer-Beschichtung für Implantate

    Im mikroskopischen Fluoreszenzbild lassen sich die Strukturen aus Molekülen erkennen, die zu Testzwecken auf die bioabbaubare Beschichtung gedruckt wurden. Im mikroskopischen Fluoreszenzbild lassen sich die Strukturen aus Molekülen erkennen, die zu Testzwecken auf die bioabbaubare Beschichtung gedruckt wurden.  Bild: KIT

    Medizinische Implantate tragen oft Oberflächensubstrate, die Wirkstoffe abgeben oder auf denen Biomoleküle sowie Zellen besser haften können. Allerdings gab es bislang keine abbaubaren Gasphasenbeschichtungen für abbaubare Implantate wie chirurgische Nahtmaterialien oder Gerüste für die Gewebezucht. Eine Polymerbeschichtung, die im Körper wie ihr Träger abgebaut wird, stellen nun Forscher des Karlsruher Instituts für Technologie in der Fachzeitschrift Angewandte Chemie vor. „Unsere neuen abbaubaren Polymerfilme könnten breite Anwendung für die Funktionalisierung und Beschichtung von Oberflächen finden, in den Biowissenschaften über die Medizin bis hin zur Lebensmittelverpackung“, so Professor Joerg Lahann, Co-Direktor des Instituts für Funktionelle Grenzflächen am Karlsruher Institut für Technologie. Gemeinsam in einem internationalen Team stellte er Polymerfilme her, die mit funktionellen Seitengruppen als „Verankerungspunkte“ für Moleküle ausgestattet waren, an die sie Fluoreszenzfarbstoffe und Biomoleküle andocken ließen.

  • Biological system with light switch: new findings from Graz

    Schematic representation of the illumination of the sensor domain of a photo-receptor and the molecular propagation of the light signal to the effector (in red on the right-hand edge of the image). © TU Graz/IBC

    For the first time ever, researchers at TU Graz and the Medical University of Graz have managed to functionally characterise the three-dimensional interaction between red-light receptors and enzymatic effectors. The results, with implications for optogenetics, have been published in Science Advances. The aim of optogenetics is to control genetically modified cells using light. A team of Graz scientists led by Andreas Winkler from the Institute of Biochemistry at TU Graz have set a milestone in the future development of novel red-light regulated optogenetic tools for targeted cell stimulation.

  • Breakthrough in Quantum Physics: Reaction of Quantum Fluid to Photoexcitation of Dissolved Particles

    Markus Koch (3rd from left), Bernhard Thaler (4th fro left), head of institute Wolfgang Ernst (far right) and team in the "Femtosecond-Laser-Lab" at the Institute of Experimental Physics at TU Graz. ©Lunghammer - TU Graz

    Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet. In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on processes in molecules and clusters which take place on time scales of picoseconds (10⁻¹² seconds) and femtoseconds (10⁻¹⁵ seconds). Now Koch and his team have achieved a breakthrough in the research on completely novel molecular systems.

  • Call for Abstracts: 3rd Euro Intelligent Materials

    © Christian-Albrechts-Universität Kiel (Germany)

    The 3rd European Symposium on Intelligent Materials will take place in Kiel (Germany) from 7th to 9th June 2017. Conference chairs are Christine Selhuber-Unkel and Eckhard Quandt from the Christian-Albrechts-Universität zu Kiel (Germany).

  • Cancer Research - How Cells Die by Ferroptosis

    A Fibroblast Undergoing Ferroptosis. Source: Helmholtz Zentrum München

    Ferroptosis is a recently discovered form of cell death, which is still only partially understood. Scientists at the Helmholtz Zentrum München have now identified an enzyme that plays a key role in generating the signal that initiates cell death. Their findings, published in two articles in the journal ‘Nature Chemical Biology’, could now give new impetus to research into the fields of cancer, neurodegeneration and other degenerative diseases. The term ferroptosis was first coined in 2012. It is derived from the Greek word ptosis, meaning “a fall”, and ferrum, the Latin word for iron, and describes a form of regulated necrotic cell death in which iron appears to play an important role.

  • Cebit 2017: Computational Biologists Predict Antibiotic Resistances Using Biotech

    Time-consuming: Bacteria have to be cultivated in nutrient media in order to detect resistances. Special tests and gene data are designed to provide faster and more reliable results.  Curetis

    Every year, some 25,000 people die in the European Union from antibiotic-resistant, hard to treat bacteria. Although there are diagnostic methods in place to recognize such resistances in advance, these are typically very time-consuming. Researchers from the Center for Bioinformatics at Saarland University, in cooperation with the molecular diagnostics company Curetis, are developing techniques to uncover these dangerous resistances a lot faster. Their secret weapons: a comprehensive gene database, and powerful algorithms. The researchers will be presenting their rapid test procedures, and their outlook for the future, at Stand E28 at the Cebit computer trade show in Hannover, Germany.

  • Chemists connect three components with new coupling reaction

    The new reaction, explained using plastic building bricks: In a single reaction, three (bottom) instead of two (top right) chemical components are linked via carbon-carbon bonds. Photo: WWU/Ludger Tebben

    In the current issue of the "Science" magazine, a team of chemists led by Prof. Armido Studer from the Institute of Organic Chemistry at Münster University present a new approach which enables three – and not, as previously, two – chemical components to be "coupled" in one single reaction without any transition metal.

    In the current issue of the "Science" magazine, chemists at Münster University present a new approach which for the first time enables three – and not, as previously, two – chemical components to be "coupled" in one single reaction, without any metals to aid the process. The researchers succeeded in producing not only pharmaceutically relevant compounds containing fluorine, but also various γ-lactones. These organic compounds occur widely in various types of fruit and also, for example, as flavouring substances in whisky and cognac.

  • Cold Molecules on Collision Course

    Schematic view of the experimental setup of the “cryofuge”. Graphic: MPQ, Quantum Dynamics Division

    Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules. 

    How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at the same time. Scientists around Dr. Martin Zeppenfeld from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have now taken an important step in this direction by developing a new cooling method: the so-called “cryofuge” combines cryogenic buffer-gas cooling with a special kind of centrifuge in which rotating electric fields decelerate the precooled molecules down to velocities of less than 20 metres per second.

  • Complex Tessellations, Extraordinary Materials

    So-called Archimedean tessellations are often associated with very special properties, for example unusual electrical conductivity, special light reflectivity or extreme mechanical strength. Klappenberger and Zhang / TUM

    An international team of researchers lead by the Technical University of Munich (TUM) has discovered a reaction path that produces exotic layers with semiregular structures. These kinds of materials are interesting because they frequently possess extraordinary properties. In the process, simple organic molecules are converted to larger units which form the complex, semiregular patterns.

  • Designer Cells: Artificial Enzyme can Activate a Gene Switch

    Artificial metalloenzyme penetrates a mammalian cell, where it accelerates the release of a hormone. This activates a gene switch which then leads to the production of a fluorescent indicator protein. University of Basel, Yasunori Okamoto

    Complex reaction cascades can be triggered in artificial molecular systems: Swiss scientists have constructed an enzyme than can penetrate a mammalian cell and accelerate the release of a hormone. This then activates a gene switch that triggers the creation of a fluorescent protein. The findings were reported by researchers from the NCCR Molecular Systems Engineering, led by the University of Basel and ETH Zurich.

  • Die Geburt des Partikels

    Experiment, bei dem durch langsame Zugabe verschiedener Lösungen die Reaktion gestartet, kontrolliert und untersucht werden kann.

    Ein an der Universität Konstanz entwickeltes Experiment kann den Mechanismus der Partikelbildung ausgehend von gelösten molekularen Bausteinen aufzeigen

  • DNA repair: a new letter in the cell alphabet

    A complex tag for DNA-repair: 3D cartoon showing the linkage of ADP-ribose to the amino acid serine in a protein (turquoise). Max Planck Institute for Biology of Ageing

    Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins” to the damaged parts within the DNA. To do this, an elaborate protein language has evolved. Now scientists from the Max Planck Institute for Biology of Ageing have discovered the way a new letter of this alphabet is used in cells. This novel protein modification, called serine ADP-ribosylation, has been overlooked by scientists for decades. This finding reveals how important discoveries may be hidden in scientific “blind spots”. Results reveal how discoveries may be hidden in scientific “blind spots”.

  • Environment Turns Molecule into a Switch

    A flat molecule on a surface comprised of bismuth atoms (blue) and silver atoms (grey). The central manganese atom (red) is capable of changing its position. Graphic: Jens Kügel & Michael Karolak

    For the first time, physicists from the University of Würzburg have successfully positioned an organic molecule on a substrate realizing two stable configurations. This may have application potential in molecular spintronics. It looks like a cross with four arms of equal length that have a central atom at their intersection. All atoms are arranged in one plane so that the molecule is absolutely planar – at least in the normal state.

  • First Users at European XFEL

    DESY's Anton Barty (left) and Henry Chapman (right), seen at the SPB/SFX instrument, were in one of the first two user groups. Photo: DESY, Lars Berg

    The first users have now started experiments at the new international research facility in Schenefeld. “This is a very important event, and we are very happy that the first users have now arrived at European XFEL so we can do a full scale test of the facility” said European XFEL Managing Director Prof. Dr. Robert Feidenhans’l. ”The instruments and the supporting teams have made great progress in the recent weeks and months. Together with our first users, we will now do the first real commissioning experiments and collect valuable scientific data. At the same time, we will continue to further advance our facility and concentrate on further improving the integration and stability of the instrumentation” he added.