Material sciences

  • Diamond Friction: Simulation Reveals Previously Unknown Friction Mechanisms at the Molecular Level

    Passivation of water-lubricated diamond surfaces by aromatic Pandey surface reconstruction (orange). Image: © Fraunhofer Institute for Mechanics of Materials IWM

    Diamond coatings help reduce friction and wear on tools, bearings, and seals. Lubricating diamond with water considerably lowers friction. The reasons for this are not yet fully understood. The Fraunhofer Institute for Material Mechanics IWM in Freiburg and the Physics Institute at the University of Freiburg have discovered a new explanation for the friction behavior of diamond surfaces under the influence of water. One major finding: in addition to the known role played by passivation of the surfaces via water-splitting, an aromatic passivation via Pandey reconstruction can occur. The results have been published in the journal Physical Review Letters.

  • Diamond Lenses and Space Lasers at Photonics West

    Image 1: This laser cutting head with diamond optics features built-in water cooling and shielding gas supply; diamond lenses reduce its weight by 90%. © Fraunhofer ILT, Aachen, Germany.

    San Francisco's Photonics West, the world's premier optics and photonics trade fair, aims to bring together science and industry once again in 2018. Fraunhofer Institute for Laser Technology ILT will be putting on an effective demonstration of how to converge the two. The Aachen-based company's booth in the German Pavilion is primed to showcase cutting-edge technology, such as a 90% lighter laser cutting head and a laser platform for space applications. Photonics experts from around the world will make their annual pilgrimage to San Francisco in late January.

  • Diamond Lenses Make Laser Optics Significantly Lighter

    Diamond optics are characterized by significantly greater heat conductivity and a higher refractive index while also having outstanding mechanical properties. © Fraunhofer ILT, Aachen / Volker Lannert.

    Diamonds are not only a girl's best friend, but synthetic diamonds are also attractive as a material for laser optics: thanks to their extremely high refractive index and excellent heat conduction, laser optics made with them are ten times lighter than conventional laser optics. Fiber lasers in the kW range could, thus, operate with greater flexibility. Three Fraunhofer institutes have optimized the production and processing of diamonds in recent years, and the first cutting system with diamond lenses is being tested.

  • Diamond Watch Components

    An anchor for a watch component made of single-crystal synthetic diamond. Schweizerischer Nationalfonds SNF

    SNSF-funded researchers have developed a new technique for carving materials to create micromechanical systems. In particular, they have created a miniscule watch component out of synthetic single-crystal diamond.

  • Diesel engine with innovative steel pistons

    The BINE Projektinfo brochure entitled "Steel pistons for more efficient diesel engines" © BINE Informationsdienst

    Car engines are becoming increasingly compact with a greater specific power. This reduces the weight, moving masses and fuel consumption. In the engine, however, the temperatures and pressures rise for individual components. This causes conventional pistons made of aluminium to reach their limits. The new BINE Projektinfo brochure entitled "Steel pistons for more efficient diesel engines" (14/2016) presents a cooling concept for engine pistons using a liquid metal alloy. Compared with aluminium, steel offers greater strength against thermal and mechanical loads.

  • Directly-cooled Electric Motor Made from Polymer Materials

    Sectional view of the electric motor. © Fraunhofer ICT

    Making electric cars lighter also involves reducing the weight of the motor. One way to do that is by constructing it from fiber-reinforced polymer materials. Researchers at the Fraunhofer Institute for Chemical Technology ICT are working together with the Karlsruhe Institute of Technology KIT to develop a new cooling concept that will enable polymers to be used as motor housing materials. And that’s not the only advantage of the new cooling concept: it also significantly increases the power density and efficiency of the motor compared to the state of the art.

  • Dresdner scientists print tomorrow’s world

    Printed thermoelectric module with flexible geometry Fraunhofer IWS Dresden

    The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

  • Ears from the 3D-printer

    A 3D-printed ear: Empa researcher Michael Hausmann uses nanocellulose as the basis for novel implants. Empa

    Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing. It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains: «In viscous state cellulose nanocrystals can easily be shaped together with nother biopolymers into complex 3-dimensional structures using a 3D printer, such as the Bioplotter.” Once cross-linked, the structures remain stable despite their soft mechanical properties.

  • Easy Printing of Biosensors Made of Graphene

    Endless film with printed biosensors: Fraunhofer has developed a convenient roll-to-roll process. Fraunhofer IBMT

    Cell-based biosensors can simulate the effect of various substances, such as drugs, on the human body in the laboratory. Depending on the measuring principle, though, producing them can be expensive. As a result, they are often not used. Cost factors for sensors that perform measurements electrically are the expensive electrode material and complex production. Fraunhofer scientists are now producing biosensors with graphene electrodes cheaply and simply in roll-to-roll printing. A system prototype for mass production already exists.

  • Economical Engines Due to Less Friction

    The Diamor® coating developed at the Fraunhofer IWS could contribute to reduce CO2 emissions by reducing friction in the engine cylinder between the coated piston pin and the connecting rod bushing. © Fraunhofer IWS Dresden

    Together with the automotive industry, researchers at the Fraunhofer IWS have been working to develop processes for friction-reducing surfaces of engine components over the past few years. Now, carbon dioxide emissions can be reduced even further by enhancing surface technology. The Dresden Institute is researching in this direction with various partners in the joint project "Prometheus".

  • Effective Deposition of Thin Insulating Layers for Sensors in Hydrogen Technology

    Schematic of a hydrogen filling station as an application scenario for pressure sensors with insulation layers. © metamorworks / Shutterstock

    Scientists at the Fraunhofer FEP have investigated new approaches for depositing low-defect insulating layers, part of the joint project “NaFuSS“ (German Federal Ministry of Education and Research/BMBF promotional reference number 13N13171). The aim is to increase the reliability and durability of pressure sensors for hydrogen technology, an area that is becoming increasingly important.

  • Efficiency Boost for Laser Cutting and Drilling at LASER CHINA

    © Photo Fraunhofer ILT, Aachen, Germany / Volker Lannert.  A programmable multi-beam optics with galvanometer scanner can split the laser into any number of beamlets. The resulting pattern can be changed and positioned anywhere on the workpiece.

    The Chinese market for industrial laser technology is still growing fast and so does the LASER World of PHOTONICS CHINA, which has become the most visited trade show for lasers and optical components. At this year’s trade show, the Fraunhofer Institute for Laser Technology ILT will be presenting new ideas for industrial laser applications, most of which are focused on increased efficiency of laser micro machining processes (Hall N4, Booth 4243).

  • Efficient and Flexible – Fraunhofer ISE Presents Innovations in Storage at Energy Storage Europe

    The test cell has been successfully implemented in research projects at Fraunhofer ISE and duplicated for project partners. Fraunhofer ISE

    The Fraunhofer Institute for Solar Energy Systems ISE is presenting innovative solutions and projects on renewable energy storage and grid integration at the Energy Storage Europe, the leading international trade fair for storage in Düsseldorf, Germany from March 13-15. Fraunhofer ISE is presenting at a joint booth of the Fraunhofer Energy Alliance (Hall 8b, booth B39). Parallel to the trade fair, the 12th International Renewable Energy Storage Conference (IRES) and the 7th Energy Storage Europe Conference (ESE) are taking place.

  • Efficient extraction of oil vapours in industry

    During cold rolling of aluminium, the required fan power can be halved by a new extraction hood.  © Achenbach Buschhütten GmbH & Co. KG

    Before aluminium is transformed into metal sheets and foils, the metal passes through several hot and cold rolling processes. Sprayed roller oil cools and lubricates the work rolls and prevents damage occurring to the thin metal strips during the processing. The BINE-Projektinfo brochure entitled "Extracting fumes in rolling mills" (05/2017) presents a new extraction hood for the vaporised rolling oils. It has been calculated that this system will enable a typical rolling mill to save up to 330,000 kWh of electrical energy per year.

  • Efficient Recycling of Lithium-Ion Batteries – Launch of Research Project NEW-BAT

    A new method will allow to recover valuable battery materials. © K. Selsam-Geißler, Fraunhofer ISC

    Funding was granted by the Federal Ministry of Education and Research (BMBF) to develop an innovative recycling process for valuable battery materials to be reinserted into the battery supply chain. The goal of the NEW-BAT project is a robust, energy efficient and economically viable system with wide application potential. Lithium-ion batteries are key elements in electromobility and a successful energy turnaround. The widespread use of these energy storage devices will come along with large quantities of spent batteries which itself constitute a valuable source of raw materials.

  • Electrical Fields Drive Nano-Machines a 100,000 Times Faster than Previous Methods

    Electric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Enzo Kopperger / TUM

    Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date. This makes nanobots fast enough to do assembly line work in molecular factories. The new research results will appear as the cover story on 19th January in the renowned scientific journal Science.

  • Electron Beam Patterning for High-resolution Full-color OLED Displays

    Probe station with patterned OLEDs in the clean room of Fraunhofer FEP. © Fraunhofer FEP

    OLED microdisplays are increasingly establishing themselves in wearables and data glasses. In order to meet the requirements for higher efficiency, higher contrast, and higher resolutions in these applications, Fraunhofer FEP scientists have developed a new micropatterning approach for OLEDs on silicon substrates. This might eliminate the use of color filters and shadow masks in the future and allow full-color displays to be developed by means of a new process.

  • Electron highway inside crystal

    Step edges on topological crystalline insulators may lead to electrically conducting pathways where electrons with opposite spin spin move in converse directions - any U-turn is prohibited. Picture: Thomas Bathon/Paolo Sessi/Matthias Bode

    Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science. Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was highlighted again as the Royal Swedish Academy of Sciences in Stockholm awarded this year's Nobel Prize in Physics to three British scientists for their research of so-called topological phase transitions and topological phases of matter.

  • Electronic Highways on the Nanoscale

    In the Laboratory a structured silicon carbide crystal is heated in a preparation chamber of a scanning tunneling microscope, so that small graphene structures can be formed. Photo: TU Chemnitz/Jacob Müller

    For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices. Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely converted to wasted heat. This is not only harmful to the environment, but also limits further miniaturization of electronic components and increase of clock rates. A way out of this dilemma are conductors with no electrical resistance.

  • Energy hybrid: Battery meets super capacitor

    After stations in Zurich, Kanada and Scotland ERC Starting Grant awardee Stefan Freunberger researches on new energy storage systems at TU Graz. © Lunghammer - TU Graz

    Researcher at TU Graz demonstrates in Nature Materials that it is possible to combine the high-energy density of batteries with the high-power output of super capacitors in a single system – thanks to liquid energy storage materials. Batteries and super capacitors are electrochemical energy storage media, but they are as different as night and day. Both are capable of energy storage and targeted energy release – and yet there are major differences between the two. Batteries store very large amounts of energy that is released slowly but constantly. By contrast, super capacitors can only store small amounts of energy, but they release this energy much faster and more powerfully with large short-term peak currents.