Material sciences

  • Converts One-third of the Sunlight into Electricity: 33.3 % Silicon-based Multi-junction Solar Cell

    Silicon-based multi-junction solar cell consisting of III-V semiconductors and silicon. The record cell converts 33.3. percent of the incident sunlight into electricity. © Fraunhofer ISE/Photo: Dirk Mahler

    Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with the company EV Group (EVG) have developed a new silicon-based multi-junction solar cell, which can convert exactly one-third of the incident sunlight into useful electricity. This newest result is now published in the renowned scientific magazine Nature Energy.

  • Conveyor Technology: Moving Large Quantities of Small Goods Using Muscles Made of Silicone Polymer

    Prof. Stefan Seelecke (l.) and Steffen Hau will be exhibiting a model of their vibrating conveyor system at Hannover Messe. Credit: Oliver Dietze

    Using artificial-muscle actuators, Stefan Seelecke and his team of engineers at Saarland University have developed a new self-optimizing conveyor technology that adapts itself to the size, weight and desired speed of the materials being conveyed. The technology makes use of silicone polymer-based artificial muscles to transport dry bulk materials of all kinds, from foodstuffs to small metal components. By exploiting the properties of electromechanically active polymers, the Saarbrücken research team has built an actuator that they install at intervals below the conveyor belt.

  • Cooling towards absolute zero using super-heavy electrons

    Temperature evolution of an Yb0.81Sc0.19Co2Zn20 single crystal during the reduction of a magnetic field from 8 to 0 Tesla. © University of Augsburg, IFP/EP VI

    New quantum material significantly improves adiabatic demagnetization cooling

  • Cooperation with Namibia underway for new materials for industrial applications

    f.l.: Gerhard Wenz, Saar Uni, Bernd Reinhard, INM, Günter Weber, INM, Erold Naomab, UNAM, Kenneth Matengu, UNAM, Aránzazu del Campo, , INM, Roland Rolles, Saar Uni, Carsten Becker-Willinger, INM. Sourec: INM

    The INM – Leibniz Institute for New Materials officially began its collaborative effort with the University of Namibia (UNAM) by holding a kick-off workshop. The aim of the joint project, NaMiComp, which is funded by the German Federal Ministry for Economic Cooperation and Development, is to analyze Namibia’s locally available natural resources and then use them as a basis for new materials for industrial applications. INM and UNAM are working together on the NaMiComp project in order to establish and strengthen research competence in materials science at UNAM. In the long term, the aim is to build an on-site materials science institute at the University of Namibia.

  • Copper Compound as Promising Quantum Computing Unit

    Jena doctoral student Benjamin Kintzel looks at a laboratory vessel containing crystals of a novel molecule that may possibly be used in a quantum computer. Photo: Jan-Peter Kasper/FSU

     

    Quantum computers could vastly increase the capabilities of IT systems, bringing major changes worldwide. However, there is still a long way to go before such a device can actually be constructed, because it has not yet been possible to transfer existing molecular concepts into technologies in a practical way. This has not kept researchers around the world away from developing and optimising new ideas for individual components. Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer. They report on their work in the current issue of the research journal ‘Chemical Communications’.

  • Corrective glass for mass spectrometry imaging

    Custom-built laser source for mass spectrometry imaging: By means of the improved LAESI technique the surface of this coarse piece of savoy cabbage can now be chemically analyzed. Benjamin Bartels / Max Planck Institute for Chemical Ecology

    Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now improved mass spectrometry imaging in such a way that the distribution of molecules can also be visualized on rippled, hairy, bulgy or coarse surfaces. The source of the laser-based technique was custom-built to accommodate the topography of non-flat samples. By employing a distances sensor, a height profile of the surface is recorded before the actual chemical imaging. The new tool can be used for answering ecological questions from a new perspective.

  • Corrosion and Wear Protection: Economical, Environmentally Friendly and Extremely Fast

    With EHLA, metal protective layers can be applied with ultra-high-speed. Fraunhofer ILT, Aachen, Germany / Volker Lannert.

    Components are protected against corrosion and wear through hard chrome plating, thermal spraying, laser material deposition or other deposition welding techniques. However, there are downsides to these processes – for example, as of September 2017, chromium(VI) coatings will require authorization. Researchers from the Fraunhofer Institute for Laser Technology ILT in Aachen as well as the RWTH Aachen University have now developed an ultra-high-speed laser material deposition process, known by its German acronym EHLA, to eliminate these drawbacks. On May 30, 2017, the research team was awarded the Joseph von Fraunhofer Prize for this work.

  • Crystals for Superconduction, Quantum Computing and High Efficiency Solar Cells

    Crystals have applications in a wide variety of fields. Photo of a multicrystalline silicon wafer, which serves as the basis of a solar cell.  ©Fraunhofer ISE

    From March 8-10, 2017, an International Conference on Crystal Growth is to be held in Freiburg under the auspices of the German Association of Crystal Growth DGKK and the Swiss Society for Crystallography SGK-SSCR. The conference, jointly organized by the Fraunhofer Institute for Solar Energy Systems ISE, the Crystallography department of the Institute of Earth and Environmental Sciences at the University Freiburg and the University of Geneva, is to be held in the seminar rooms of the Chemistry Faculty of the University of Freiburg. Furthermore, the Young DGKK will hold a seminar for young scientists at Fraunhofer ISE on March 7, 2017.

  • CVD Diamond Coating: New Innovative Process Improves the Adhesion of Diamond to Cemented Carbide

    The broken edge of a diamond-coated carbide component pretreated with the newly developed procedure, with significantly improved adhesion of the diamond layer. © Fraunhofer Institute for Mechanics of Materials IWM

    To reduce process costs in industrial parts manufacturing while simultaneously improving quality, the use of diamond-coated, cemented carbide cutting tools has increased. Adhesion of diamond coatings was previously problematic, particularly when processing composite or lightweight materials. Suitable pretreatment is therefore vital. Dr. Manuel Mee of the Fraunhofer Institute for Mechanics of Materials IWM has developed a new pretreatment routine that increases the adhesion of CVD diamond to carbide: by combining several approaches into a single process, all factors which affect the adhesion of the coating can be taken into consideration, leading to a fundamental improvement of the adhesion.

  • Data Storage Using Individual Molecules

    Graphic animation of a possible data memory on the atomic scale: A data storage element - consisting of only 6 xenon atoms - is liquefied by a voltage pulse. Universität Basel, Departement of Physics

    Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

  • Describing the Behaviour of Electrons Under Extreme Conditions for the First Time

    In nature, the hot, dense matter of electron gas occurs inside planets, such as here in Jupiter. Photo: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset

    Electrons are an elementary component of our world: they surround the core of all atoms, are essential to the formation of molecules, and primarily determine the properties of solids and liquids. They are also the charge carriers of electrical current, without which our high-tech environment with smartphones, computers and even the traditional light bulb would not be conceivable. In spite of their omnipresence in everyday life, we have not yet been able to accurately describe the behaviour of interacting electrons - only approximate it in models - especially at extreme temperatures and densities, such as inside planets or in stars.

  • Designing Nanocrystals for More Efficient Optoelectronics

    The luminescent atoms in the image show a nanocrystal which is characterized with atomistic resolution, including its interface chemistry. experimental and theoretical approaches. Published with permission by Nature Publishing Group. Copyright: Peter Allen

     

    New artificial materials for semiconductors used in solar cells or photoelectrochemical cells that are designed from scratch with totally new and tailored properties: this is the latest research topic of Stefan Wippermann, head of the group “Atomistic Modelling“ at the Max-Planck-Institut für Eisenforschung), and his team. They characterized for the first time with atomic resolution a typical material system and are able to set design principles.

  • Development and Fast Analysis of 3D Printed HF Components

    Fraunhofer FHR’s high frequency scanner SAMMI® analyses the quality of 3D printed high frequency structures. Fraunhofer FHR

    3D printing is becoming increasingly important for the development of modern high frequency systems as it opens up new design possibilities. Fraunhofer FHR is exploring these possibilities for its customers and partners: from designing new HF components to testing these components. Engineers are inspecting the quality of components manufactured using additive processes with their high frequency transmitted light imaging system SAMMI®, e.g. to verify the correct density gradients of the material. As a member of the Forschungsfabrik Mikroelektronik Deutschland, they will present this system at the Hannover Messe in hall 2, booth C22, from April 23 to 27, 2018.

  • Diamond Friction: Simulation Reveals Previously Unknown Friction Mechanisms at the Molecular Level

    Passivation of water-lubricated diamond surfaces by aromatic Pandey surface reconstruction (orange). Image: © Fraunhofer Institute for Mechanics of Materials IWM

    Diamond coatings help reduce friction and wear on tools, bearings, and seals. Lubricating diamond with water considerably lowers friction. The reasons for this are not yet fully understood. The Fraunhofer Institute for Material Mechanics IWM in Freiburg and the Physics Institute at the University of Freiburg have discovered a new explanation for the friction behavior of diamond surfaces under the influence of water. One major finding: in addition to the known role played by passivation of the surfaces via water-splitting, an aromatic passivation via Pandey reconstruction can occur. The results have been published in the journal Physical Review Letters.

  • Diamond Lenses and Space Lasers at Photonics West

    Image 1: This laser cutting head with diamond optics features built-in water cooling and shielding gas supply; diamond lenses reduce its weight by 90%. © Fraunhofer ILT, Aachen, Germany.

    San Francisco's Photonics West, the world's premier optics and photonics trade fair, aims to bring together science and industry once again in 2018. Fraunhofer Institute for Laser Technology ILT will be putting on an effective demonstration of how to converge the two. The Aachen-based company's booth in the German Pavilion is primed to showcase cutting-edge technology, such as a 90% lighter laser cutting head and a laser platform for space applications. Photonics experts from around the world will make their annual pilgrimage to San Francisco in late January.

  • Diamond Lenses Make Laser Optics Significantly Lighter

    Diamond optics are characterized by significantly greater heat conductivity and a higher refractive index while also having outstanding mechanical properties. © Fraunhofer ILT, Aachen / Volker Lannert.

    Diamonds are not only a girl's best friend, but synthetic diamonds are also attractive as a material for laser optics: thanks to their extremely high refractive index and excellent heat conduction, laser optics made with them are ten times lighter than conventional laser optics. Fiber lasers in the kW range could, thus, operate with greater flexibility. Three Fraunhofer institutes have optimized the production and processing of diamonds in recent years, and the first cutting system with diamond lenses is being tested.

  • Diamond Watch Components

    An anchor for a watch component made of single-crystal synthetic diamond. Schweizerischer Nationalfonds SNF

    SNSF-funded researchers have developed a new technique for carving materials to create micromechanical systems. In particular, they have created a miniscule watch component out of synthetic single-crystal diamond.

  • Diesel engine with innovative steel pistons

    The BINE Projektinfo brochure entitled "Steel pistons for more efficient diesel engines" © BINE Informationsdienst

    Car engines are becoming increasingly compact with a greater specific power. This reduces the weight, moving masses and fuel consumption. In the engine, however, the temperatures and pressures rise for individual components. This causes conventional pistons made of aluminium to reach their limits. The new BINE Projektinfo brochure entitled "Steel pistons for more efficient diesel engines" (14/2016) presents a cooling concept for engine pistons using a liquid metal alloy. Compared with aluminium, steel offers greater strength against thermal and mechanical loads.

  • Dresdner scientists print tomorrow’s world

    Printed thermoelectric module with flexible geometry Fraunhofer IWS Dresden

    The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

  • Ears from the 3D-printer

    A 3D-printed ear: Empa researcher Michael Hausmann uses nanocellulose as the basis for novel implants. Empa

    Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing. It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains: «In viscous state cellulose nanocrystals can easily be shaped together with nother biopolymers into complex 3-dimensional structures using a 3D printer, such as the Bioplotter.” Once cross-linked, the structures remain stable despite their soft mechanical properties.