Material sciences

  • Insects Supply Chitin as a Raw Material for the Textile Industry

    After pupae shed their skin, pupal exuviae remain as residual stream. Fraunhofer IGB

    Harmful chemicals are often used in textile processing. That is why the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB is researching harmless biobased alternatives. The Institute is working on utilizing side streams from the animal feed manufacture for the production of chitosan.

  • Intelligente Filter für innovative Leichtbaukonstruktionen

    Schaumkeramikfilter auf Basis von Aluminiumoxid für die Aluminiumschmelzefiltration

    Hochtechnologie-Produkte der Zukunft basieren auf hochreinen, fehlerfreien Werkstoffen, die eine gleichmäßige Einstellung der chemischen Zusammensetzung und eine verstärkte Kontrolle des Reinheitsgrades der metallischen Werkstoffe erfordern. Wissenschaftler und Doktoranden aus elf Instituten der TU Bergakademie Freiberg erforschen seit 5 Jahren, wie anorganische nichtmetallische Einschlüsse in Metallschmelzen durch den Einsatz intelligenter Filterwerkstoffe bzw. Filtersysteme aus Keramik reduziert werden können.
    Nun präsentieren sie Forschung und Ergebnisse des SFB 920 „Multifunktionale Filter für die Metallschmelzefiltration - ein Beitrag zu Zero Defect Materials“ auf der CellMAT 2016.

  • Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

    S. Manna and R. Wiesendanger, University of Hamburg, Germany

    Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials. While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations spatially coexist with antiferromagnetism.

  • Invisible tags: Physicists at TU Dresden Write, Read and Erase Using Light

    A luminescent tag, contactless printed onto a plastic foil. The light emitting layer is thinner than a human hair. The imprint can be erased and replaced by another pattern. M. Gmelch and H. Thomas, TU Dresden

    A team of physicists headed by Prof. Sebastian Reineke of TU Dresden developed a new method of storing information in fully transparent plastic foils. Their innovative idea was now published in the renowned online journal “Science Advances”. Prof. Reineke and his LEXOS team work with simple plastic foils with a thickness of less than 50 µm, which is thinner than a human hair. In these transparent plastic foils, they introduce organic luminescent molecules. In the beginning, these molecules are in an inactive, dark state. By locally using ultraviolet irradiation, it is possible to turn this dark state into an active, luminescent one.

  • It Takes Two: Structuring Metal Surfaces Efficiently with Lasers

    A combination of nanosecond and picosecond pulses make the precision manufacture of functional surfaces also efficient. Fraunhofer ILT, Aachen, Germany.

    In the automotive industry, more and more surfaces are getting a microstructure treatment. Whether they are added to cylinders or dashboards, functional surfaces are all the rage. Able to offer virtually unlimited precision, lasers are the right tool for the job. To ensure that productivity matches precision, development is under way on a machine that will be able to efficiently process even large surfaces thanks to a combination of two different pulse types. Ultrashort pulse lasers have for many years been the tool of choice for processing micromaterials. No matter what the material, ultrashort pulse lasers can ablate even in the micrometer range with high precision. The only catch is that it takes plenty of time concerning the industrial application.

  • It’s All in the Mix: Jülich Researchers are Developing Fast-charging Solid-state Batteries

    The solid electrolyte serves as a stable carrier material to which the electrodes are currently applied on both sides using the screen printing process.  Forschungszentrum Jülich / Regine Panknin

    There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature.

  • IVAM’s LaserForum Visits the Swiss Canton of St. Gallen with the Topic Ultrashort Pulse Lasers

    Thin-film removal with the UKP-Laser. Source: Fraunhofer ILT, Aachen, Volker Lannert

    On October 17, 2017 the LaserForum visits the city of Buchs in the Swiss canton of St. Gallen with the topic "Ultrashort pulse lasers: new technologies, materials processing & medical applications". Host is the NTB Interstate University of Technology Buchs. The LaserForum take place on international ground for the first time in 2017. The event has been organized by the IVAM Microtechnology Network in collaboration with partners from industry and research for ten years now.

  • Joining Metals without Welding

    The aluminium flange is firmly attached to the aluminium wall. Photo: Siekmann, CAU

    Kiel prototype for new connection technology will be presented at the Hannover Messe. Welding is still the standard technique for joining metals. However, this laborious process carried out at high temperatures is not suitable for all applications. Now, a research team from the "Functional Nanomaterials" working group at Kiel University, together with the company Phi-Stone AG from Kiel, has developed a versatile alternative to conventional welding and gluing processes.

  • Key Enabling Technologies at HANNOVER MESSE 2017

    Needle with very sharp tip end (

    Within the new focus area MICRO-NANO-AREA, the IVAM Microtechnology Network and Deutsche Messe will pool the “Key Enabling Technologies” Micro- and Nanotechnology, MEMS, Photonics and Advanced Materials. With these technologies, production of structures, components and devices is becoming more precise, more reliable, more flexible and faster. The following exhibitors will present their product innovations on-site.

  • Laser Processes for Multi-Functional Composites

    Trimming of a hybrid car roof bow made of glass and carbon-fiber reinforced plastic. Fraunhofer ILT, Aachen, Germany.

    Since composites combine the advantages of dissimilar materials, they can be used to exploit great potential in lightweight construction. At JEC World 2019 in Paris in March, scientists from the Fraunhofer Institute for Laser Technology ILT will present a broad range of laser-based technologies for the efficient production and processing of composite materials. Visitors to the joint booth of the Aachen Center for Integrative Lightweight Construction AZL, Hall 5A/D17, will gain insight into joining and cutting processes as well as surface structuring.

  • Laser rescue system for serious accidents

    The chances for rescue are much higher the faster a person can be freed from the vehicle. Photo: Stadt Dortmund – Institut für Feuerwehr- und Rettungstechnologie

    Better technology and modern materials increase the traffic safety and save human life. But they pose totally new challenges for the emergency personnel at the accident site. Because today, tools like hydraulic rescue cutters more and more often reach their limits. A mobile laser unit for rescue missions shall solve this problem. The Laser Zentrum Hannover e.V. (LZH), six project partners and eight associated partners have teamed up to develop this system. In the past 25 years, the number of road traffic deaths has been drastically reduced, and the number of severely injured persons decreased significantly, too. Among others, the declining figures are due to improved passive safety. The use of high-tensile steel and composite materials adds to this.

  • Laser-additive manufacturing paves the way to Industry 4.0

    Additive manufacturing at the micro scale using Selective Laser Melting. LZH

    On November 09th, 2016, already for the third time, the Laser Zentrum Hannover e.V. (LZH) and NiedersachsenMetall invited small and medium-sized enterprises (SMEs) to attend the Innovation Day Laser Technology at LZH. About 100 guests informed themselves about the state-of-the-art as well as the application and market potential of the focus topic “Laser Additive Manufacturing”. „Are we ready for implementing Industry 4.0?“, asked Dr. Volker Schmidt, CEO of NiedersachsenMetall and Chairman of the Industrial Board of the LZH, the audience at the beginning. With regard to the innovation potentials and new markets, he emphasized the high importance of digitalization. “What is the future of work in the age of digitalization?”, opened Ingelore Hering from the Lower Saxony Ministry for Economics, Labour and Transport her welcome speech with a question, too. “Only all stakeholders together can find sustainable answers to this challenge. For example here today.”

  • LaserTAB: More Efficient and Precise Contacts Thanks to Human-Robot Collaboration

    The lightweight construction robot “intelligent industrial work assistant” guarantees that man and machine cooperate smoothly. © KUKA AG, Augsburg, Germany.

    At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

  • Launch of New Industry Working Group for Process Control in Laser Material Processing

    Image 1:  Surface structuring with laser radiation. © Fraunhofer IPT, Aachen, Germany.

    At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility. In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive manufacturing to laser polishing – are now commonplace in large-scale production.

  • Launch of project ECO COM'BAT: Sustainable energy storage with high-voltage batteries

    Efficient lithium-ion pouch cell with the base materials. © K. Selsam-Geißler, Fraunhofer ISC

    Cruising range is one of the greatest challenges for the rapid implementation of electromobility in Europe. Ten partners from industry and research organizations now join forces in the EU funded project ECO COM'BAT, coordinated by the Fraunhofer Project Group Materials Recycling and Resource Strategies, part of the Fraunhofer Institute for Silicate Research ISC, to develop the next generation of lithium-ion batteries – the high-voltage battery. Better performance is not the only goal for the new battery. Compared to conventional batteries the new type should be more powerful and even more sustainable due to the substitution of conventional, often expensive, rare or even critical materials.

  • Leaving Flatland – Quantum Hall Physics in 4D

    Illustration of a hypothetical device for studying the quantum Hall effect in 4D systems. Two 2D Hall bars (left/right) - the geometry used by Klaus von Klitzing for the first measurement of the 2D quantum Hall effect - are combined in orthogonal subspaces to form a 4D quantum Hall system (center). This 4D sample is depicted by encoding the fourth dimension in the colour of a surface in three spatial dimensions with red depicting positive values and blue negative ones. (Graphic: LMU/MPQ)

    Researchers from LMU/MPQ implement a dynamical version of the 4D quantum Hall effect with ultracold atoms in an optical superlattice potential. In literature, the potential existence of extra dimensions was discussed in Edwin Abbott’s satirical novel “Flatland: A Romance of Many Dimensions” (1884), portraying the Victorian society in 19th century England as a hierarchical two-dimensional world, incapable of realizing its narrow-mindedness due to its lower-dimensional nature. In physics, on the other hand, the possibility that our universe comprises more than three spatial dimensions was first proposed in the wake of Albert Einstein’s theory of general relativity in the 1920s.

  • Leibniz-IPHT Scientist Presents First Flexible Optical Tweezer in Nature Photonics

    Dynamic holographic optical tweezers (HOT) manipulation of eight particles in a rotating cube arrangement.Source: Nature Photonics (2017) doi:10.1038/s41566-017-0053-8. Photo: Leibniz-IPHT

    Tomáš Čižmár studies new methods to control light propagation in optical fibers. The scientist, who recently relocated from University of Dundee in Scotland to the Leibniz-Institute of Photonic Technology in Jena (Leibniz-IPHT), published an article about optical traps for medical diagnostics in the highly-cited journal Nature Photonics. Optical traps are tightly focused light beams that can be used to confine, manipulate and examine microscale objects such as cells or DNA. Tweezers made of light are not new. Due to their bulky optics, researchers so far could only manipulate and study biomolecules outside their natural environment on microscope slides. 

  • Lichtfernbedienung für die Reparatur von Materialien

    Durch Licht-Bestrahlung kann sich die intelligente Kunststoffbeschichtung gezielt selbst reparieren. Bild: Stefan Hecht

    Forscherteam unter Leitung der HU entwickelt intelligente Kunststoffbeschichtung, die sich durch Licht-Bestrahlung gezielt repariert. Muss ein stark beschädigter Alltagsgegenstand ausgewechselt werden, ist das zumeist umweltbelastend und teuer. Um dies in Zukunft zu vermeiden, arbeiten Forscher seit Jahren an der Entwicklung neuer Materialien, die Kratzer oder Risse reparieren können. Ein Team unter Leitung von Forschern der Humboldt-Universität zu Berlin (HU) hat nun erstmals Kunststoffbeschichtungen entwickelt, die mit Hilfe von Licht gezielt Beschädigungen heilen können. Die Ergebnisse ihrer Studie stellen sie in der Nature Communications vor.

  • Light and Strong: Hybrid Lightweight Components Made of Steel and Fiber-reinforced Plastics

    Part of a hybrid rocker panel locally functionalized using laser-assisted tape placement. Foto: Fraunhofer IPT

    In recent years there has been a sharp increase in demand for lighter components for applications in mobility and transport in response to the need to save weight, and therefore energy and resources. Hybrid components made of steel, locally functionalized with fiber-reinforced plastics combine high mechanical performance with low weight. Demand for manufacturing processes conducive to cost-effective mass-production is burgeoning.

  • Light from a Roll – Hybrid OLED Creates Innovative and Functional Luminous Surfaces

    Prototypes of the eyecatcher motorcycle jacket with luminous integrated flexible OLEDs at LOPEC 2019. © EMDE development of light GmbH

    Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.