Material sciences

  • Efficient and Flexible – Fraunhofer ISE Presents Innovations in Storage at Energy Storage Europe

    The test cell has been successfully implemented in research projects at Fraunhofer ISE and duplicated for project partners. Fraunhofer ISE

    The Fraunhofer Institute for Solar Energy Systems ISE is presenting innovative solutions and projects on renewable energy storage and grid integration at the Energy Storage Europe, the leading international trade fair for storage in Düsseldorf, Germany from March 13-15. Fraunhofer ISE is presenting at a joint booth of the Fraunhofer Energy Alliance (Hall 8b, booth B39). Parallel to the trade fair, the 12th International Renewable Energy Storage Conference (IRES) and the 7th Energy Storage Europe Conference (ESE) are taking place.

  • Efficient extraction of oil vapours in industry

    During cold rolling of aluminium, the required fan power can be halved by a new extraction hood.  © Achenbach Buschhütten GmbH & Co. KG

    Before aluminium is transformed into metal sheets and foils, the metal passes through several hot and cold rolling processes. Sprayed roller oil cools and lubricates the work rolls and prevents damage occurring to the thin metal strips during the processing. The BINE-Projektinfo brochure entitled "Extracting fumes in rolling mills" (05/2017) presents a new extraction hood for the vaporised rolling oils. It has been calculated that this system will enable a typical rolling mill to save up to 330,000 kWh of electrical energy per year.

  • Efficient Recycling of Lithium-Ion Batteries – Launch of Research Project NEW-BAT

    A new method will allow to recover valuable battery materials. © K. Selsam-Geißler, Fraunhofer ISC

    Funding was granted by the Federal Ministry of Education and Research (BMBF) to develop an innovative recycling process for valuable battery materials to be reinserted into the battery supply chain. The goal of the NEW-BAT project is a robust, energy efficient and economically viable system with wide application potential. Lithium-ion batteries are key elements in electromobility and a successful energy turnaround. The widespread use of these energy storage devices will come along with large quantities of spent batteries which itself constitute a valuable source of raw materials.

  • Electrical Fields Drive Nano-Machines a 100,000 Times Faster than Previous Methods

    Electric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Enzo Kopperger / TUM

    Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date. This makes nanobots fast enough to do assembly line work in molecular factories. The new research results will appear as the cover story on 19th January in the renowned scientific journal Science.

  • Electron Beam Patterning for High-resolution Full-color OLED Displays

    Probe station with patterned OLEDs in the clean room of Fraunhofer FEP. © Fraunhofer FEP

    OLED microdisplays are increasingly establishing themselves in wearables and data glasses. In order to meet the requirements for higher efficiency, higher contrast, and higher resolutions in these applications, Fraunhofer FEP scientists have developed a new micropatterning approach for OLEDs on silicon substrates. This might eliminate the use of color filters and shadow masks in the future and allow full-color displays to be developed by means of a new process.

  • Electron highway inside crystal

    Step edges on topological crystalline insulators may lead to electrically conducting pathways where electrons with opposite spin spin move in converse directions - any U-turn is prohibited. Picture: Thomas Bathon/Paolo Sessi/Matthias Bode

    Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science. Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was highlighted again as the Royal Swedish Academy of Sciences in Stockholm awarded this year's Nobel Prize in Physics to three British scientists for their research of so-called topological phase transitions and topological phases of matter.

  • Electronic Highways on the Nanoscale

    In the Laboratory a structured silicon carbide crystal is heated in a preparation chamber of a scanning tunneling microscope, so that small graphene structures can be formed. Photo: TU Chemnitz/Jacob Müller

    For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices. Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely converted to wasted heat. This is not only harmful to the environment, but also limits further miniaturization of electronic components and increase of clock rates. A way out of this dilemma are conductors with no electrical resistance.

  • Energy hybrid: Battery meets super capacitor

    After stations in Zurich, Kanada and Scotland ERC Starting Grant awardee Stefan Freunberger researches on new energy storage systems at TU Graz. © Lunghammer - TU Graz

    Researcher at TU Graz demonstrates in Nature Materials that it is possible to combine the high-energy density of batteries with the high-power output of super capacitors in a single system – thanks to liquid energy storage materials. Batteries and super capacitors are electrochemical energy storage media, but they are as different as night and day. Both are capable of energy storage and targeted energy release – and yet there are major differences between the two. Batteries store very large amounts of energy that is released slowly but constantly. By contrast, super capacitors can only store small amounts of energy, but they release this energy much faster and more powerfully with large short-term peak currents.

  • Energy-saving New LED Phosphor

    The crystal structure of the SALON phosphor is the reason for its excellent luminescence properties. Uni Innsbruck

    The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

  • Engineers at Saarland University Turn Polymer Films into Self-sensing High-tech Actuators

    To showcase their technology at Hannover Messe, the engineers Philipp Linnebach (r.) and Paul Motzki (l.) have come up with a playful way of demonstrating its capabilities. Credit: Oliver Dietze

    They might only be made from thin silicon film, but they can squeeze down hard, deliver a powerful thrust, vibrate or hold any required position. And because they can act as sensors, they are becoming important tools in technical applications. Stefan Seelecke and his team at Saarland University are developing a new generation of polymer film-based engineering components that can be used as continuous switches, self-metering valves, motorless pumps or even as tactile aids for touchscreens. The technology needs neither rare earths nor copper, it is cheap to produce and consumes very little energy and components made using it are astonishingly light.

  • Entangling Photons from a Quantum Dot in the Telecom C-Band

    Schematic representation of a quantum dot emitting polarization entangled photons. The entanglement is here pictorially represented by the transparent connection between the two photons. Sascha Kolatschek, Universität Stuttgart / IHFG

    A research team of the institute of semiconductor optics and functional interfaces (IHFG) of the University of Stuttgart experimentally verified the generation of polarization-entangled photon pairs in the emission wavelength range of the telecom C-band. The generation of entangled photons, i.e. a non-classical phenomenon which “bounds” the states of two different entities, is a cornerstone for the realization of quantum networks.

  • Environmentally Friendly Alternative to Prohibited Hard Chrome Plating Using Chromium(VI)

    World premiere: EHLA system for Laser Material Deposition of piston rods having a length of up to ten meters. © Fraunhofer ILT, Aachen, Germany / Hornet Laser Cladding B.V., Lexmond, NL.

    The strict conditions on the use of chromium(VI) for corrosion and wear protection coatings, which will take effect in the EU in September 2017, hit the manufacturers of highly stressed metal components particularly hard. One such company is IHC Vremac Cylinders B.V. in the Dutch city of Apeldoorn. The hydraulic cylinders it manufactures, which often measure many meters in length, have to withstand rough maritime conditions for years. With its choice of an award-winning alternative to hard chrome plating, this Dutch manufacturer has become the first company in the world to coat its components using the EHLA technique developed by the Fraunhofer Institute for Laser Technology ILT in Aachen.

  • Environmentally Friendly Steel Coatings: Fraunhofer ILT Wins Steel Innovation Award

    On June 13, 2018, the Fraunhofer ILT team took 2nd place at the Steel Innovation Awards in Berlin in the “Steel in Research and Development” category for their EHLA process. © Fraunhofer ILT, Aachen, Germany.

    Once every three years, the German steel industry presents its Steel Innovation Awards. The purpose of this initiative is to recognize innovations that are helping to ensure this material remains a viable choice for the long term. The jury considers not just products made from steel, but also innovative processes such as Extreme High-speed Laser Material Deposition (EHLA). For the development of the EHLA process, researchers from the Fraunhofer Institute for Laser Technology ILT in Aachen won the Joseph von Fraunhofer Prize in 2017. On June 13, 2018, the researchers were honoured with the 2nd Prize of the Steel Innovation Award in the “Steel in Research and Development” category.

  • Etching Microstructures with Lasers

    Structuring process for glass using direct laser ablation with ultrafast laser pulses. Fraunhofer ILT, Aachen / Volker Lannert.

    Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

  • eTRANSAFE – Collaborative Research Project Aimed at Improving Safety in Drug Development Process

    An aim of the project eTRANSAFE is to analyze whether and to what extent preclinical data enable reliable prediction of clinical findings. Felix Schmitt, Fraunhofer ITEM

    (Hannover/Germany) The 40 million euro European project eTRANSAFE, to be kicked off at the end of September 2017, is aimed at speeding up the development of better and safer medicines for patients. Coordinated by the Fundació Institut Mar d'Investigacions Mèdiques (IMIM) and led by the pharmaceutical company Novartis, the project consortium is a public-private partnership of eight academic institutions, six SMEs, and twelve pharmaceutical companies. One of the project partners is Fraunhofer ITEM.

  • EU funds research on biofuels and infectious diseases

    Salmolla. © Goethe University Frankfurt.

    FRANKFURT. Two ERC Advanced Investigator Grants of the European Research Council to the amount of € 2.5 million each are going to researchers at Goethe University Frankfurt. Biochemist and physician Professor Ivan Dikic and microbiologist Professor Volker Müller are very honoured that their pioneering research projects have been selected for this substantial financial support.

    Volker Müller is one of the leading microbiologists worldwide in the field of microbial metabolism of microbes that grow in the absence of oxygen. His project centres on the production of biofuels with the help of bacteria that can use carbon dioxide as feedstock.

  • EU project INNOVIP: new technologies for long-lasting and cost-effective vacuum insulation panels

    Vacuum Insulation Panels. FIW München

    High-tech building insulation: EU research project INNOVIP to develop new technologies for long-lasting and cost-effective vacuum insulation panels. Munich – The demands from Brussels are ambitious: by 2050, office and private buildings in Europe must lower their CO2 footprint by around 80 percent, compared to 1990 levels (1). Optimal thermal insulation will play a key role in achieving this target. Vacuum insulation panels (VIPs) are particularly promising in this regard, but are still very expensive and difficult to work with. Moreover, to ensure a high level of market acceptance, the lifetime of the panels has to be improved.

  • Europe's microtechnology industry is attuned to growth

    Economic development in the European microtechnology industry 2017-2019. IVAM Research

    Global economic, social and political developments as well as technological disruptions like the digital transformation do not leave the representatives of the European microtechnology industry unaffected. Nevertheless, growth forecasts for the next three years are distinctively positive. More than 80 percent of the companies expect to increase sales in the period from 2017 to 2019. The number of employees is also expected to rise in more than three-quarters of the companies. Increasing growth rates during the last four years are likely to have given rise to this optimism in the microtechnology industry: since 2013, the share of companies that have been able to increase their turnover and their number of employees has risen steadily.

  • Evaluating Risk of Hydrogen Embrittlement: New Simulation of Cold Cracks in High-strength Steels

    Light microscopy image of a welded connection’s weld structure. © Fraunhofer IWM

    High-strength steels play a vital role in the construction of modern vehicles and machines. If these steels are welded during the production of components, mobile hydrogen atoms can cause problems within the material: the atoms accumulate slowly at highly stressed areas of a component, resulting in the steel becoming brittle at these locations. This can result in so-called cold break formations which can lead to component failure. Dr. Frank Schweizer of the Fraunhofer Institute for Mechanics of Materials IWM has developed a simulation method with which component manufacturers can assess cold break tendencies and adjust their production accordingly.

  • Evidence of the Higgs Particle's Decay in Quarks

    The illustration shows an event that could be the sought-after decay of the Higgs particle in quarks. Illustration: ATLAS collaboration

    Research group at the University of Freiburg contribute significant new findings to the ATLAS experiment.

    As part of the ATLAS collaboration, the Freiburg research group led by Prof. Dr. Karl Jakobs and Dr. Christian Weiser has contributed to finding strong evidence that, among other things, the Higgs particle decays into quarks. The researchers analyzed data sets that were recorded in 2015 and 2016 with the ATLAS detector at the world’s largest particle accelerator, the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland.