Laser technology

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term "laser" originated as an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light coherently. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances (collimation), enabling applications such as laser pointers. Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum, i.e., they can emit a single color of light. Temporal coherence can be used to produce pulses of light as short as a femtosecond.

  • “MuReA“ Provides Quick and Large-Scale Laser Applications

    The multi remote system of the Fraunhofer IWS Dresden processes large areas by means of laser radiation and atmospheric pressure plasma. © Fraunhofer IWS Dresden

    The Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS developed the novel remote system concept (MuReA) for quick, flexible and efficient laser processing tasks. IWS scientists combined laser remote systems, spindle drives and high performance beam sources with each other. As a result, this novel laser system enables large-scale, flexible and quick processing tasks for materials such as aluminum, stainless steel as well as fiber reinforced polymers. Working areas of up to one square meter can be processed at a laser beam speed of up to 10 meters per second. In particular, the automotive and the aerospace industry will benefit from possible applications.

  • 3D printed optical lenses, hardly larger than a human hair

    3D printed optical lenses hardly larger than a human hair | Complex 3D printed objective on an optical fiber in a syringe. University of Stuttgart/ 4th Physics Institute

    3D printing enables the smallest complex micro-objectives

    3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines are written sequentially, even the most complex devices could be realized fast and easy. This method is now also available for optical elements. Researchers at University of Stuttgart in Germany have used an ultrashort laser pulses in combination with optical photoresist to create optical lenses which are hardly larger than a human hair.

  • 3D-microdevice for minimally invasive surgeries

    Figures 1 and 2. Microswimmer CAD and microswimmer micrograph. © MPI IS

    Scientists take challenge of developing functional microdevices for direct access to the brain, spinal cord, eye and other delicate parts of human body. A tiny robot that gets into the human body through the simple medical injection and, passing healthy organs, finds and treats directly the goal – a non-operable tumor… Doesn’t it sound at least like science-fiction? To make it real, a growing number of researchers are now working towards this direction with the prospect of transforming many aspects of healthcare and bioengineering in the nearest future. What makes it not so easy are unique challenges pertaining to design, fabrication and encoding functionality in producing functional microdevices.

  • A laser for divers

    Laser cutting of sheet piling under water. Photo: LZH

    Working under water is personnel- and time-intensive. The Laser Zentrum Hannover e.V. (LZH) is therefore working on developing a laser-based, automated process for cutting sheet piling under water, together with the Institute of Materials Science of the Leibniz Universität Hannover. Sheet piling protects fortified shore areas, or can be used to dry out these areas if repairs are necessary. If the sheet piling must be dismantled, divers must cut the walls into smaller pieces using a cutting torch. Normally, a diver can cut about 20 meters a day, which corresponds to a speed of about 0.07 meters per minute. In the project LuWaPro, scientists at the LZH have now developed a process which uses a disc laser for torch cutting. The divers thus only carries out a supervisory role. The process can be used to separate the metal sheets, which are usually 10 mm thick for sheet piling, at speeds of up to 0.9 m/min.

  • A Quantum Low Pass for Photons

    Illustration of the two-photon blockade. Top: Irradiated by a laser pulse a single atom in free space can absorb and emit only one photon at a time, without constraints on the direction of the photons. Middle: A system consisting of a cavity can absorb and emit an unlimited number of photons. Below: In case of the strongly coupled atom-cavity system the frequency of the laser light can be chosen such that the system can store and emit two photons at maximum. MPQ, Quantum Dynamics Division

    Physicists in Garching observe novel quantum effect that limits the number of emitted photons. The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called Poisson-distribution. There are, however, light sources with non-classical photon number distributions that can only be described by the laws of quantum mechanics. A well-known example is the single-photon source that may find application in quantum cryptography for secret key distribution or in quantum networks for connecting quantum memories and processors. However, for many applications in nonlinear quantum optics light pulses with a certain fixed number of photons, e.g. two, three or four, are highly desirable.

  • A study on thermophoretic Janus particles and capsules used as dyes for infrared laser‐assisted tissue welding.

    A) Production of Janus composite particles by LbL self‐assembly of PEM and magnetite nanoparticles followed by sputter coating with gold and resuspension in water. B) Laser tissue welding with magnetic assistance, due to magnetite particles being homogeneously distributed in the particles the particle orientation is random during welding. © 2016 Wenping He, Johannes Frueh, Narisu Hu, Liping Liu, Meiyu Gai, and Qiang He. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

    Researchers from China and London* recently published a principle study on thermophoretic Janus particles and capsules used as dyes for infrared laser‐assisted tissue welding. The original article “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding” was published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Aachen Center for 3D Printing: Official launch of the world’s largest SLM facility

    On June 1, 2017, the world’s largest selective laser melting (SLM) facility for metal components was inaugurated at the new Digital Photonic Production industry building on the RWTH Aachen Campus. Concept Laser GmbH

    For their joint project, the Aachen Center for 3D printing, the Aachen University of Applied Sciences and the Fraunhofer Institute for Laser Technology ILT have ambitious plans. On June 1, 2017, they officially opened the world’s largest SLM facility, located in the new Digital Photonic Production industry building on the RWTH Aachen campus. Concept Laser’s new XLine 2000R selective laser melting system plays a pivotal role in the SLM-XL research project, which is intended to accelerate and optimize the entire manufacturing process for large, metal components.

    Scientists are working closely with the Digital Photonic Production research campus, which is located in the same building and funded by the German Federal Ministry of Education and Research (BMBF).

  • Added Disorder Drives Transition to Photonic Topological Insulator

    A honeycomb waveguide structure with helical waveguides acts as a photonic topological insulator so that light is guided along the surface. Copyright: University of Rostock/Alexander Szameit, Lukas Maczewsky

    As the journal Nature reported recently, a research group led by the Rostock physicist Professor Alexander Szameit, in collaboration with colleagues in Israel and the U.S., experimentally demonstrated that a messy topological insulator can be restored in its properties by inducing random disorder.

  • Additive manufacturing, from macro to nano

    Magnesium part produced with selective laser micro melting.  Photo: LZH

    Creating large structures with high volume or with the highest-possible resolution: The Laser Zentrum Hannover e.V. (LZH) is carrying out research on diverse processes for additive manufacturing, in order to push past the present limits. At the Hannover Messe 2017, at the pavilion of the State of Lower Saxony (hall 2, stand A08), the LZH is presenting the state of the art.

    Light for Innovation – since 1986, the Laser Zentrum Hannover e.V. (LZH) has been committed to advancing laser technology. Supported by the Lower Saxony Ministry for Economics, Labour and Transport, the LZH has been devoted to the selfless promotion of applied research in the field of laser technology.

  • Alloys From the Laser Printer

    These small sized samples are made out of oxide dispersion strengthened titanium aluminides and have been made as part of the PhD-work. Empa

    In the future, new designer alloys for aerospace applications can be manufactured using the 3-D laser melting process (Additive Manufacturing). Pioneering work in this field was provided by Empa researcher Christoph Kenel, who works today at Northwestern University (Chicago). Empa grants him the Research Award 2017. Titan-Aluminum alloys are combining low density, high strength and oxidation resistance at elevated temperatures and are therefore of high technical relevance e.g. in aerospace engineering.

  • Appointment of Prof. Schleifenbaum to the chair “Digital Additive Production“ at RWTH Aachen Uni

    Picture: “In the area of Additive Manufacturing, the applications and the transfer of know-how into the industry are particularly important!” © Schleifenbaum.

    Univ.-Prof. Dr.-Ing. Dipl. Wirt.-Ing. Johannes Henrich Schleifenbaum has followed the call to the newly established chair – “Digital Additive Production DAP” – of the Faculty of Mechanical Engineering at RWTH Aachen University. He assumed the position on August 1, 2016. He also took over management of the competence area “Additive Manufacturing and Functional Layers” at the Fraunhofer Institute for Laser Technology ILT in Aachen on November 1, 2016. Pooled expertise in additive manufacturing technologies in Aachen. Along with RWTH Aachen University, FH Aachen University of Applied Sciences and industrial partners, the Fraunhofer Institutes ILT and IPT form a strong network promoting additive manufacturing (AM) technologies at an international level. In addition to the Photonics Cluster, inaugurated in April 2016 at the RWTH Aachen Campus, the newly established DAP chair rounds off the great spectrum of AM offered by Aachen’s R&D landscape.

  • Asymmetric Plasmonic Antennas Deliver Femtosecond Pulses for Fast Optoelectronics

    Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire. Image: Alexander Holleitner / TUM

    A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

  • Atomic precision: technologies for the next-but-one generation of microchips

    Atomic precision technologies for the next but one generation of microchips picture 2 Image 2: The coating of mirrors is carried out with atomic precision at Fraunhofer IOF in Jena. © Fraunhofer IOF, Jena, Germany

    In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

  • Attosecond camera for nanostructures

    Attosecond camera for nanostructures | When laser light interacts with a nanoneedle (yellow), electromagnetic near-fields are formed at its surface. A second laser pulse (purple) emits an electron (green) from the needle, permitting to characterize the near-fields.

    Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

  • Attoseconds Break into Atomic Interior

    After the interaction of a xenon atom with two photons from an attosecond pulse (purple), the atom is ionized and multiple electrons (green balls) are ejected. This two-photon interaction is made possible by the latest achievements in attosecond technology. Graphic: Christian Hackenberger

    A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

  • Bern-made laser altimeter taking off to Mercury

    The BepiColombo Laser Altimeter (BELA) University of Bern / Ramon Lehmann

    University of Bern’s Laser Altimeter BELA has been successfully tested during the last weeks and the last components will be delivered to ESA on 5 October. The first laser altimeter for inter-planetary flight to be built in Europe is part of the ESA BepiColombo mission to Mercury. Starting in 2024, it will provide data about the planet’s surface.

  • Breakthrough with 3D printed Gas Turbine Blades

    Extreme conditions for the 3D-printed blades: The blades had to endure 13,000 revolutions per minute and temperatures beyond 1,250 degrees Celsius.

    Siemens has achieved a breakthrough in the 3D printing of gas turbine blades. For the first time, a team of experts has full-load tested gas turbine blades that were entirely produced using additive manufacturing. The tests were conducted at the Siemens test center for industrial gas turbines in Lincoln, Great Britain. Over the course of several months, Siemens engineers from Lincoln, Berlin, and the Swedish municipality of Finspong worked with experts from Materials Solutions to optimize the gas turbine blades and their production. Within just 18 months, the international project team succeeded in developing the entire process chain, from the design of individual components, to the development of materials, all the way to new methods of quality control and the simulation of component service life. In addition, Siemens tested a new additively manufactured blade design with a fully revised and improved internal cooling geometry.

  • Bug-proof communication with entangled photons

    Fraunhofer IOF‘s quantum source. Designed to be fully operational even after extreme stress. Fraunhofer IOF

    Due to the rapidly growing processing power of computers, conventional encryption of data is becoming increasingly insecure. One solution is coding with entangled photons. Fraunhofer researchers are developing a quantum coding source that allows the transport of entangled photons from satellites, thereby making an important step in the direction of tap-proof communication. In addition to the quantum source, researchers from various Fraunhofer institutes will be presenting other exciting optoelectronic exhibits at the LASER World of Photonics trade fair in Munich from June 26 - 29, 2017 (Hall A2, Booth 431 and Hall B3, Booth 327).

  • Care-O-bot® 4 celebrates its première as shopping assistant

    Paul, a member of the Care-O-bot® 4 robot family, has been greeting customers in Saturn-Markt Ingolstadt since the end of October 2016 and directing them towards their desired products. Source: Saturn

    In January 2015, Fraunhofer IPA presented a prototype of the “Care-O-bot® 4” service robot. The charming helper is now proving its worth in the real world. “Paul” the robot has been greeting customers in Saturn-Markt Ingolstadt since the end of October 2016 and directing them towards their desired products. Care-O-bot 4®, alias Paul, approaches Saturn customers and welcomes them to the store. If they ask him about a certain product, he accompanies the customer to the department and points them in the direction of the relevant shelf. As he indulges in small talk about the weather or another subject, Paul turns out to be a most charming contact partner. However, he prefers to leave actual customer service to his human colleagues.

  • CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass

    Picture 1: A matter of shape: the Fraunhofer CeGlaFlex project is developing very thin, malleable and transparent protective covers for OLEDs in the roll-to-roll process. © Fraunhofer FEP, Dresden, Germany.

    Only twice as thick as a strand of hair, or around 100 µm: that’s how thin the transparent, scratchproof and malleable ceramic layers of the future that are meant to protect portable electronics are. Since March 2017, the methods and process chains for producing this material have been in development at the Fraunhofer Institute for Laser Technology ILT as part of a three-year research project called CeGlaFlex. Mobile electronics, regardless of whether it is a cellular phone, tablet or blood pressure monitor, rely on the quality of their touch-screen displays. In keeping with the trend of individually shaped smart devices, they should be not only scratchproof, unbreakable and chemically stable, but also easy to mold.