Infection

  • A new study shows how dangerous germs travel as stowaways from one continent to another

    Using a special culture, germs from smears can be recognized and identified. Photo: WWU/H. Dornhege

    As scientists from Münster University, in collaboration with the Robert Koch Institute in Berlin, have now demonstrated, toilets at airports are also a “transfer point” for germs. These include germs against which traditional antibiotics for the treatment of bacterial infections are not, or only partially, effective.
    Münster (mfm/sm) – Everyday life at an airport: there’s still time before the jet taking passengers to faraway countries takes off – time enough for a quick visit to the toilet. What awaits passengers there is not always a pleasant sight. However, what they don’t see can be much worse. As scientists from Münster University, in collaboration with the Robert Koch Institute in Berlin, have now demonstrated, toilets at airports are also a “transfer point” for germs.

  • Deciphering the motility apparatus of bacteria

    Salmonellae with dye-stained flagella. Each colour marks a section of the flagella that grew in a defined time interval (blue: Salmonellae). HZI/Renault et al.

    HZI scientists elucidate how bacteria assemble flagella outside the cell. Many bacteria move by rotating long, thin filaments called flagella. Flagella are made of several tens of thousands building blocks outside the bacterial cell and grow up to ten times longer than the bacterial cell body. They allow bacteria to swim towards a nutrient source or to approach cells of the human mucosa in order to infect them. This means that flagella are also tools in infection processes and might be suitable as potential targets for new agents against pathogenic bacteria.

  • Dissecting bacterial infections at the single-cell level

    Left: a macrophage (nucleus in blue) infected with a non-replicating bacteria in yellow indicated by an arrow and on the right infected with bacteria that has replicated (red). (Picture: Antoine-Emmanuel Saliba)

    Technological advances are making the analysis of single bacterial infected human cells feasible, Würzburg researchers have used this technology to provide new insight into the Salmonella infection process. The study has just been published in “Nature Microbiology”. Infectious diseases are a leading cause of mortality worldwide. The development of novel therapies or vaccines requires improved understanding of how viruses, pathogenic fungi or bacteria cause illnesses.

  • EU funds research on biofuels and infectious diseases

    Salmolla. © Goethe University Frankfurt.

    FRANKFURT. Two ERC Advanced Investigator Grants of the European Research Council to the amount of € 2.5 million each are going to researchers at Goethe University Frankfurt. Biochemist and physician Professor Ivan Dikic and microbiologist Professor Volker Müller are very honoured that their pioneering research projects have been selected for this substantial financial support.

    Volker Müller is one of the leading microbiologists worldwide in the field of microbial metabolism of microbes that grow in the absence of oxygen. His project centres on the production of biofuels with the help of bacteria that can use carbon dioxide as feedstock.

  • Immune system reactions elucidated by mathematics

    Bacteria of the species Streptococcus pneumoniae colonising an endothelial cell. HZI/M. Rohde

    Using computer-based simulations and mouse experiments, HZI researchers disentangled the effects of proinflammatory signaling molecules on the post-influenza susceptibility to pneumococcal coinfection. A body infected by the influenza virus is particularly susceptible to other pathogens. Bacteria like Streptococcus pneumoniae, i.e. the pathogen causing pneumonia, find it easy to attack an influenza-modulated immune system and to spread widely. This can even be fatal in some cases. The reasons for the bacterial growth in the presence of a coinfection by influenza virus and bacteria is still debatable.

  • Körpereigene Nanopartikel als Transporter für Antibiotika

    Dr. Gregor Fuhrmann vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS). G. Fuhrmann

    Neue BMBF-Nachwuchsgruppe um Gregor Fuhrmann erforscht, wie Medikamente gezielt zu Krankheitserregern im Körper geschleust werden können. Bakterien entwickeln zunehmend Resistenzen gegen die gängig eingesetzten Antibiotika – unter anderem als Folge der übermäßigen und zum Teil falschen Anwendung der Medikamente. Zudem haben Antibiotika häufig unangenehme Nebenwirkungen, da sie auch nützliche Bakterien abtöten. Der Pharmazeut Dr. Gregor Fuhrmann, Wissenschaftler am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), möchte eine Technologie entwickeln, mit der Antibiotika im Körper gezielt zu den krankmachenden Bakterien transportiert werden.

  • Less is more: Researchers develop a ‘molecular needle’ using a simplified biological system

    The type III secretion system (T3SS) is a needle-like molecular machine that gram negative bacteria use to infect cells. IMP-IMBA

    Minimalism is an increasingly popular lifestyle choice that encourages individuals to decrease the overall number of possessions owned and live more simply. According to minimalist philosophy, the reduction of unnecessary clutter enables one to live a more functional and purposeful existence. IMP-IMBA Group Leader and CSSB scientist Thomas Marlovits*, in collaboration with colleagues from Massachusetts Institute of Technology (MIT), discovered that a minimalist approach can also be applied to complex biological systems, such as the type III secretion system. The findings of this collaborative study have been published in the scientific journal, Nature Communications.

  • Molecular "Trojan horses" render infections visible

    Diagnosis of bacterial infections: The two mice on the left side are infected with Pseudomonas aeruginosa; fluorescent-labelled siderophore conjugates visualise the bacteria in the living organism. HZI/Bushra Rais

    HZI researchers develop new agents for the localisation and treatment of multi-resistant bacteria

    Multi-resistant gram-negative bacteria are particularly difficult to control with antibiotics. An agent must first penetrate through a double-hulled cell wall to be able to have an effect. In addition, some infections are difficult to diagnose because they are located deeply inside the body. A promising strategy for the detection and control of these infections is to use molecular probes with theranostic properties: They allow for simultaneous diagnosis and therapy of the infection at an early stage.

  • New Approach in the Fight Against Viruses

    Multi-Electrode Layout for Parallel Analysis of Multiple Cell Samples in Microfluic-Chips. Fraunhofer EMFT, Bernd Müller.

    In the ViroSens project, researchers from the Fraunhofer-Gesellschaft in Sulzbach and Regensburg are working together with industrial partners on a novel analytical method to make the potency testing of vaccines more efficient and cost-effective. The method combines electrochemical sensor technology and biotechnology and, for the first time, enables a completely automated analysis of the infection status of test cells.

  • Rapid Diagnosis of Diseases With Novel Blood Test

    The artistic rendering of the microscopic view into the measurement chip shows the trajectories of many individual blood cells flowing from right to left. ©Daniel Klaue/ZELLMECHANIK DRESDEN GmbH

    Prof. Dr. Jochen Guck, research group leader at the Biotechnology Center of TU Dresden (BIOTEC), together with medical colleagues from the University Hospital Carl Gustav Carus Dresden and partnering institutes from Dresden (Germany), Cambridge (UK), Glasgow (UK), and Stockholm (Sweden) use a technique called “real-time deformability cytometry” to screen thousands of cells in a drop of blood for unusual appearance and deformability in a matter of minutes.

  • Rare blood disease improves the defence against germs

    Blood smear of a myeloproliferative neoplasia patient with a significant increase in the number of platelets (purple) as compared to the clearly larger red blood cells. Ed Uthman/CC BY 2.0

    Researchers of the HZI and of the University of Magdeburg find increased immune reaction associated with a rare bone marrow disease. Patients afflicted by myeloproliferative neoplasia – a group of chronic malignant bone marrow diseases – bear a mutation in their haematopoietic stem cells. The mutation leads to the bone marrow producing too many blood cells, which thickens the blood. This can lead to blood clots or clogged blood vessels, which may trigger, e.g., a stroke. Scientists of the Helmholtz Centre for Infection Research (HZI) in Braunschweig and of the Otto von Guericke University Magdeburg recently discovered that certain cells of the immune system also bear this mutation in those patients that possess a particularly large number of altered stem cells. The impact of this scenario on the defence against pathogens was investigated in mice by the scientists. They published their results in Leukemia.

  • Selective Antibiotics Following Nature’s Example

    Selective antibiotics enable precision interventions in the microbiome (computer graphic). University of Konstanz

    Chemists from Konstanz develop selective agents to combat infectious diseases – based on the structures of natural products. With multi-resistant germs becoming more and more of a threat, we are in need of new antibiotics now more than ever. Unfortunately, antibiotics cannot distinguish between pathogens and beneficial microbes. They can destroy the delicate balance of the microbiome – resulting in permanent damages. The research team around chemist Dr Thomas Böttcher has now made a significant step towards solving these problems.

  • The clever cell

    Dr. Thomas Böttcher.

    A biological chemistry working group at the University of Konstanz has decoded a molecular mechanism that inhibits the swarming motility of bacterial populations. In nature, bacteria occur mostly in multi-cellular collectives, rather than as individuals. They are capable of coordinating their behaviour, with some species even being able to move together in swarms. The biological chemistry junior research group at the University of Konstanz investigates the ways in which organisms can manipulate and, above all, inhibit this kind of behaviour. Group leader and principal investigator Dr Thomas Böttcher, his team and doctoral researcher Sina Rütschlin (née Richter) have examined the biosynthesis of one of these swarming inhibitors, finding that its production depends upon specific conditions at the substrate level of the bacterial cell.