Heat

Heat is energy that spontaneously passes between a system and its surroundings in some way other than through work or the transfer of matter. When a suitable physical pathway exists, heat flows spontaneously from a hotter to a colder body. The transfer can be by contact between the source and the destination body, as in conduction; or by radiation between remote bodies; or by conduction and radiation through a thick solid wall; or by way of an intermediate fluid body, as in convective circulation; or by a combination of these.

  • Breakthrough with a chain of gold atoms

    Arists’ view of the quantized thermal conductance of an atomically thin gold contact. Created by Enrique Sahagun

    In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport. The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops. Heat transport is of similar fundamental importance and its control is for instance necessary to efficiently cool the ever smaller chips. An international team including theoretical physicists from Konstanz, Junior Professor Fabian Pauly and Professor Peter Nielaba and their staff, has achieved a real breakthrough in better understanding heat transport at the nanoscale.

  • Electricity from waste heat made possible by ceramics

    Where conventional materials reach their limits, ceramics can display their excellent properties. Functional ceramics – so-called thermoelectric materials – can convert waste heat directly into electricity, for example, in high-temperature processes. At the Hannover Messe 2016, Europe's largest ceramics research institute presents for the first time a system that demonstrates the reliable functionality of thermoelectric ceramic modules developed at Fraunhofer IKTS. (Hall 6, Booth B16)

  • Hamburger Wissenschaftler entwickeln Nanomaterialien für die Umwandlung von Wärme in Strom

    Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Hamburg (TUHH), des Helmholtz-Zentrum Geesthacht (HZG) in Kooperation mit der kanadischen University of Alberta haben ein neuartiges optisches Nanomaterial hergestellt, das es ermöglicht, Wärme direkt in Strahlung und danach mit hoher Effizienz in elektrische Energie umzuwandeln. Das neu entwickelte Nanomaterial soll einen wichtigen Beitrag leisten, moderne Industriegesellschaften auf ressourcenschonenden Energieeinsatz umzustellen. Publiziert wird die Arbeit am 6. Juni 2016 in „Nature Communications“, einer der weltweit wichtigsten Fachzeit-schriften für fachübergreifende, wissenschaftliche Forschungsarbeiten.

  • Improving heating-based components with foam

    Open-cell metal foam can be used in heat exchangers, convectors and coolers.   © Fraunhofer IFAM Dresden

    The energy efficiency of heat exchangers, convectors and cooling elements can be improved even further. Open-pore structures made of metal foam, which have good thermal conductivity and a large surface, offer interesting possibilities here. The BINE Projektinfo brochure entitled "Metal foam – a material for heat engineering" (11/2016) presents the development work for these materials. The aim is to optimise the manufacturing process, reduce costs and test the materials on test rigs. The material properties of the different alloys will be recorded in a database.

  • Is it possible to overcome all the barriers to nanofluids market uptake?

    Copyright Nanouptake

    Overcoming Barriers to Nanofluids Market Uptake (COST Action CA15119) is creating a Europe-wide network of leading R+D+i institutions, and of key industries, to develop and foster the use of nanofluids as advanced heat transfer/thermal storage materials to increase the efficiency of heat exchange and storage systems.

    By developing of nanofluids up to higher Technological Readiness Levels (TRL) and overcoming commercial application barriers, Nanouptake will contribute to achieve the European Horizon 2020 Energy and Climate ambitious objectives.

  • Micro Energy Harvesters for the Internet of Things

    The engineers coated a glass plate with a particularly smooth and conductive polymer layer of “Poly(Kx[Ni-itto])” by rotation coating (“spin coating”). Fraunhofer IWS Dresden

    Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed on pipes or other surfaces in order to convert waste heat into electricity. The experts at the Fraunhofer Institute for Material and Beam Technology IWS Dresden use ink based on conductive polymers for this purpose.