Flexible electronics

Flexible electronics, also known as flex circuits, is a technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polymide, PEEK or transparent conductive polyester film. Additionally, flex circuits can be screen printed silver circuits on polyester. Flexible electronic assemblies may be manufactured using identical components used for rigid printed circuit boards, allowing the board to conform to a desired shape, or to flex during its use.

  • 15-meter Roll-to-roll Device is World’s Longest OLED

    This 15-meter roll-to-roll device is the world’s longest OLED. © Lyteus

    Working within the framework of Lyteus, Holst Centre and Fraunhofer FEP step into the spotlight with the creation of the world’s longest single-device OLED. At a stunning 15 meters in length it opens the door to ‘endless OLEDs’ that manufacturers and designers can then easily tailor to their own needs. Lyteus brings together leaders in OLED technology from across Europe to create a pilot production line and product development services for OLED products. Working together, Holst Centre and Fraunhofer FEP successfully demonstrated the possibility for continuous production of OLEDs of any length. This both reduces the cost of production and enables “cut-to-fit” lighting for applications such as transportation, architecture and interior design.

  • Active Implants: How Gold Binds to Silicone Rubber

    Thin film preparation scheme. a) Cross section of the organic molecular beam deposition setup for the fabrication of soft multi-layer nanostructures under ultra-high vacuum conditions. In situ spectroscopic ellipsometry at an incident angle of 20° simultaneously monitors film thickness, optical properties, and plasmonics. Representative schemes of thermally grown soft nanostructures: b) self-assembled Au particles bound to bi-functional, thiol-terminated PDMS; c) wrinkled Cr/PDMS; d) Au nanoparticles on a PDMS membrane. Coherent electron oscillations occur if the nanoparticles become excited at the resonance frequency. Due to the incident 4 × 10 mm2 beam dimension, SE monitors nanostructures over a macroscopic area. (© Wiley-VCH Verlag)

    Flexible electronic parts could significantly improve medical implants. However, electroconductive gold atoms usually hardly bind to silicones. Researchers from the University of Basel have now been able to modify short-chain silicones in a way, that they build strong bonds to gold atoms. The results have been published in the journal «Advanced Electronic Materials».

    Ultra-thin and compliant electrodes are essential for flexible electronic parts. When it comes to medical implants, the challenge lays in the selection of the materials, which have to be biocompatible. Silicones were particularly promising for application in the human body because they resemble the surrounding human tissue in elasticity and resilience. Gold also poses an excellent electrical conductivity but does only weakly bind to silicone, which results in unstable structures.

  • Electronic tattoos: Using distinctive body locations to control mobile devices intuitively

    Using ultra-thin, electronic tattoos at distinctive body locations, users can control mobile devices. Universität des Saarlandes

    Computer scientists from Saarland University and the US company Google are giving wrinkles, knuckles and birthmarks a whole new meaning. Similarly to temporary tattoos for children, the researchers are placing ultra-thin, electronic tattoos on distinctive body locations. The user can touch, squeeze or pull them, and thereby intuitively control mobile devices such as a music player, or easily make indicators light up. The advantage is that the body locations are so familiar that the individual control elements can be operated even with one's eyes shut. In addition, they enable a completely new type of interaction, and also allow for a natural way to provide operating instructions.

  • Graphene electrodes offer new functionalities in molecular electronic nanodevices

    Molecules covalently attached to graphene are ideal candidates for electronic devices.  © Alexander Rudnev, University of Bern

    An international team of researchers led by the University of Bern and the National Physical Laboratory (NPL) has revealed a new way to tune the functionality of next-generation molecular electronic devices using graphene. The results could be exploited to develop smaller, higher-performance devices for use in a range of applications including molecular sensing, flexible electronics, and energy conversion and storage, as well as robust measurement setups for resistance standards.

  • Hannover Messe: New hybrid inks for printed, flexible electronics without sintering

    New type of hybrid inks  allow electronic circuits to be applied to paper directly from a pen. Source: INM

    Research scientists at INM – Leibniz Institute for New Materials have now developed a new type of hybrid inks which allows electronic circuits to be applied to paper directly from a pen, for example. Flexible circuits can be produced inexpensively on foil or paper using printing processes and permit futuristic designs with curved diodes or input elements. This requires printable electronic materials that retain a high level of conductivity during usage in spite of their curved surfaces. Research scientists at INM – Leibniz Institute for New Materials have now developed a new type of hybrid inks which allows electronic circuits to be applied to paper directly from a pen, for example. They are usable after drying without any further processing.

  • Healthy Hiking in Smart Socks

    Markus Hill (right), research assistantand, and textile producer Thomas Lindner check the sensors in the smart sock. Wolfgang Schmidt

    Researchers of the Chemnitz University of Technology develop tough electronic for sport and medical science. Often, a one-sided weight loading is the reason for hurting feet. But only few notice while walking. That is where the “Smart Sock”, developed by the Professorship of Sports Equipment and Technology of the Chemnitz University of Technology and in cooperation with the textile producer Lindner from Hohenstein-Ernstthal, starts: “The at the University developed electronic of the sock measures the pressure distribution and acceleration on the foot. This way, conclusions from parameters such as one-sided weight loading can be drawn”, Prof. Dr. Stephan Odenwald explains.

  • High conductive foils enabling large area lighting

    Roll-to-roll processed OLED on SEFAR TCS Planar substrates. © Fraunhofer FEP, Photographer: Jürgen Lösel

    Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments developed a roll-to-roll processed large area flexible OLED during a joint project.

    Large area OLED lighting is an attractive technology for various applications in residential, architectural and automotive lighting segments. Sefar developed high conductive, transparent and flexible electrode substrates enabling large area homogenous lighting which is demonstrated by Fraunhofer FEP in a roll-to-roll (R2R) process.

  • High-performance Roll-to-Roll processing for flexible electronics

    Ultra-thin flexible Corning® Willow® Glass with a glass thickness of 100 μm © Fraunhofer FEP, Photographer: Jürgen Lösel

    Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics presents a roll of flexible thin glass, which is coated with highly conductive ITO continuously on 100 meters with roll-to-roll technology for the first time at FLEX 2017, from June 19 – 22, 2017 in Monterey, USA at booth no. 1004.

  • Low haze structures for transparent flexible electrodes by electrospinning processes

    When conductive materials are spun, flexible conductive transparent electrodes could be produced. Source: Bellhäuser

    For flexible electrodes INM - Leibniz Institute for New Materials is working with the process of electrospinning, a technique that produces ultra-fine fibers that are up to 100 times thinner than a human hair. When conductive materials are spun, flexible conductive transparent electrodes could be produced. These FTCEs have transparencies comparable to indium tin oxide with low haze less than two percent.

    Flexible, transparent, and conductive electrodes (FTCE) are a key enabling technology for the new generation of flexible, printable and wearable electronics. The touchscreens and displays of the future will be curved and flexible and integrated into cars, phones, or medical technology.

  • Microprocessors based on a layer of just three atoms

    Overview of the entire chip. AC = Accumulator, internal buffer; PC = Program Counter, points at the next instruction to be executed; IR = Instruction Register,  used to buffer data- and instruction-bits received from the external memory; CU = Control Unit, orchestrates the other units according to the instruction to be executed; OR = Output Register, memory used to buffer output-data; ALU = Arithmetic Logic Unit, does the actual calculations.

    Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

    Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a few layers of atoms. Graphene is the best-known 2D material. Molybdenum disulphide (a layer consisting of molybdenum and sulphur atoms that is three-atoms thick) also falls in this category, although, unlike graphene, it has semiconductor properties. With his team, Dr Thomas Mueller from the Photonics Institute at TU Wien is conducting research into 2D materials, viewing them as a promising alternative for the future production of microprocessors and other integrated circuits.

  • National Nanotechnology Initiative Strategic Plan for 2016 is now accessible!

    The NNI

    Every three years, NNI agencies prepare an updated NNI Strategic Plan according to the 21st Century Nanotechnology Research and Development Act of 2003. Therefore the National Nanotechnology Coordination Office (NNCO) recently announced that the new 2016 National Nanotechnology Initiative Strategic Plan is now accessible.

  • Plug-and-Play Transformer Ensures Reliable Electricity

    In the event of power outage the installation of a mobile transformer allows safe and reliable grid connection, restoring power within one day.

    Siemens has built power transformers for ultra-high-voltage grids that can be installed within one week. Until now, this process has taken several weeks. In the event of an outage, the new transformers can restore power in a period of time that in the past would have seemed impossible. Power transformers ensure the transmission of hundreds of kilovolts (kV) of electricity over long distances all the way to the end customer. If such a transformer fails in a large city, thousands of people can be affected. Ordering and delivering a new transformer has usually taken more than six months.

  • Selbstorganisierende Nano-Tinten bilden durch Stempeldruck leitfähige und transparente Gitter

    Selbstorganisierende Nano Tinten bilden durch Stempeldruck leitfähige und transparente Gitter | Leitfähige und transparente Gitterstrukturen durch Stempeldruck mit selbstorganisierenden Nano-Tinten. Image: INM

    Transparente Elektronik findet sich heute zum Beispiel in Dünnschicht-Displays, Solarzellen und Touchscreens. Zunehmend ist Elektronik auch auf biegsamen Oberflächen von Interesse. Das erfordert druckbare Materialien, die transparent sind und deren Leitfähigkeit auch bei Verformung hoch bleibt. Dafür haben Forscher des INM – Leibniz-Institut für Neue Materialien eine neue selbstorganisierende Nano-Tinte mit einem Stempeldruckverfahren kombiniert. Damit stellten sie Gitterstrukturen her, deren Strukturbreiten unter einem Mikrometer liegen.

  • 通过受控膨胀制造柔性电子

    柔性电子产品由于其惊人的应用近年吸引了相当多的关注。电极对通常作为柔性电子装置的基本组成部分。缩短电极对空间已被证明是提高性能及降低功耗的有效方法。高效地大面积生产纳米间隔的柔性基板,仍然是很大挑战。