Fibers

Fiber is a natural or synthetic substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.Synthetic fibers can often be produced very cheaply and in large amounts compared to natural fibers, but for clothing natural fibers can give some benefits, such as comfort, over their synthetic counterparts.

  • An innovative high-performance material: biofibers made from green lacewing silk

    The mechanical properties of the green lacewing egg stalks are so remarkable that researchers would like to replicate them in technical fibers.  Wikimedia Commons, Karthik R. Bhat

    Innovative biofibers made from a silk protein of the green lacewing are being developed at the Fraunhofer Institute for Applied Polymer Research IAP in conjunction with the company AMSilk GmbH. Researchers are working on producing the protein in large quantities by using biotechnology. The aim is to use the material in the future as a high-grade rigid fiber, for example, in lightweight plastics in transportation technology. It can also be conceivably used in medical technology, for example, as a biocompatible silk coating on implants. The Fraunhofer IAP is presenting its initial material sample at the International Green Week Berlin from January 20 to 29, 2017 in Hall 4.2, booth 212.

  • Bug-proof communication with entangled photons

    Fraunhofer IOF‘s quantum source. Designed to be fully operational even after extreme stress. Fraunhofer IOF

    Due to the rapidly growing processing power of computers, conventional encryption of data is becoming increasingly insecure. One solution is coding with entangled photons. Fraunhofer researchers are developing a quantum coding source that allows the transport of entangled photons from satellites, thereby making an important step in the direction of tap-proof communication. In addition to the quantum source, researchers from various Fraunhofer institutes will be presenting other exciting optoelectronic exhibits at the LASER World of Photonics trade fair in Munich from June 26 - 29, 2017 (Hall A2, Booth 431 and Hall B3, Booth 327).

  • Building better brains: A bioengineered upgrade for organoids

    Bioengineered organoids or so called enCORs are supported by a floating scaffold of PLGA-fiber microfilaments.

    Scientists for the first time combine organoids with bioengineering. Using small microfilaments, they show improved tissue architecture that mimics human brain development more accurately and allows more targeted studies of brain development and its malfunctions, as reported in the current issue of Nature Biotechnology. A few years ago, Jürgen Knoblich and his team at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) have pioneered brain organoid technology. They developed a method for cultivating three-dimensional brain-like structures, so called cerebral organoids, in a dish. This discovery has tremendous potential as it could revolutionize drug discovery and disease research.

  • Fiber-based Quantum Communication - Interference of Photons Using Remote Sources

    Emission of single photons stemming from remote quantum dots. The wavelength of the single photons is manipulated by mixing them with strong laser fields within small crystals. University of Stuttgart/Kolatschek

    Scientists are working on the totally bug-proof communication – the so-called quantum communication. Current approaches for long-distance signal transmission rely on repeaters which are based on a crucial effect, the interference of two photons, that is, two individual light quanta coming from distant sources. Physicists from University of Stuttgart and Saarland University, in Germany, were now able to manipulate the single photons by means of small crystals without compromising their quantum mechanical nature. This manipulation is necessary to transmit the signal via optical fibers which may enable a large-area quantum network. The results were now published in Nature Nanotechnology.

  • Individualized fiber components for the world market

    From the Science and Technology Park Hannover (WTH) to the world market: The FiberBridge Photonics GmbH manufactures fiber components and modules for laser and light guiding systems. FiberBridge Photonics GmbH

    On June 14th, 2017, Dr.-Ing. Thomas Theeg, scientist at the Laser Zentrum Hannover e.V. (LZH), founded the 18th spin-off company of the research institute. Specialized in custom glass fiber components, fiber modules and manufacturing systems for these components, the FiberBridge Photonics GmbH will be providing customers from research, production, telecommunications and medical technology with individualized products.

    Already in March 2016, the business idea had been awarded at the StartUp-Impuls ideas competition of the Sparkasse Hannover and the hannoverimpuls GmbH in the “Going Global” category. Furthermore, in November 2016, scientists of the LZH received funding through the EXIST research transfer program of the German Federal Ministry of Economic Affairs and Energy.

  • Industrie 4.0 in real time

    The 5G wireless communications standard is a key technology for Industrie 4.0.

    With data transfer rates of 10 gigabits a second and a latency of just one millisecond, the 5G wireless communications standard is creating the conditions required for the tactile internet. This in turn will open up the door to new industry, transportation and medical applications. Fraunhofer researchers work on the underlying technology and have developed practical concepts to solve one of the most challenging problems – high-speed low-latency data transfer that is also entirely reliable. The new concepts and technologies will be on show at Hannover Messe 2017.

    Developing and establishing the new 5G wireless communications standard is one of the most ambitious projects of our time. Several Fraunhofer Institutes are feverishly working to lay the practical foundations for the new technology. A glance at the performance data for 5G shows just how ambitious the task is.

  • Low haze structures for transparent flexible electrodes by electrospinning processes

    When conductive materials are spun, flexible conductive transparent electrodes could be produced. Source: Bellhäuser

    For flexible electrodes INM - Leibniz Institute for New Materials is working with the process of electrospinning, a technique that produces ultra-fine fibers that are up to 100 times thinner than a human hair. When conductive materials are spun, flexible conductive transparent electrodes could be produced. These FTCEs have transparencies comparable to indium tin oxide with low haze less than two percent.

    Flexible, transparent, and conductive electrodes (FTCE) are a key enabling technology for the new generation of flexible, printable and wearable electronics. The touchscreens and displays of the future will be curved and flexible and integrated into cars, phones, or medical technology.

  • Neue Optionen für hochfeste Faserseile

    Sechs Jahre Forschungsarbeit stecken in einer neuen Seilendverbindung aus Kunststoff, die an der Universität Stuttgart entwickelt wurde. Jetzt hat der Einband für hochfeste Faserseile Marktreife erreicht, ein Prototyp ist bereits im Einsatz. Die Erfinder suchen nun weitere Partner aus der Industrie.
    Die TLB GmbH unterstützt die Universität Stuttgart bei der Vermarktung und der weltweiten wirtschaftlichen Umsetzung dieser zukunftsweisenden Erfindung.

  • New laser processes for innovative lightweight design

    Laser-remote cut metallic foam made of aluminum (left) and steel (right). © Fraunhofer IWS Dresden

    Lightweight design is one of the mostly progressive research areas involved in accomplishing the transition from fossil fuels to renewable energy sources, as well as the reduction of CO2 emissions. Innovative materials, such as carbon or glass fiber reinforced plastics (CFRP/GFRP), as well as metal foams, contribute to the successful implementation of the target set by the Federal Government. The Fraunhofer IWS has been researching in this field for many years to provide promising and affordable solutions for our industrial and research partners. One of these solutions is the laser-remote cutting technique.

  • Novel Membrane Lasers: Cool by Diamond

    Optical fiber types.

    Researchers from Stuttgart are paving the way for a new generation of semiconductor lasers!
    Lasers became popular with movies like „Star Wars“ or „James Bond“. In reality, lasers are incredibly versatile applicable tools. Physicists of the University of Stuttgart succeeded with a technological breakthrough which will extend the choice of by semiconductor lasers accessible wavelengths. This in turn will facilitate new applications. Today, depending on their power, beam quality and wavelength, lasers are used, e.g., for cutting and welding of a variety of materials or as a sensor that scans the data stored on DVDs or Blu-Ray Disks. Due to their compactness semiconductor lasers are particularly suited to be integrated in complex devices.

  • Quick, Precise, but not Cold

    Increasing productivity is currently the biggest issue with USP lasers. Multiple beam systems offer a possible solution. Fraunhofer ILT, Aachen, Germany.

    On April 26 and 27, 2017, 150 experts from research and industry met in Aachen for the 4th UKP-Workshop: Ultrafast Laser Technology. Once again, the workshop – organized by the Fraunhofer Institute for Laser Technology ILT – focused on the industrial uses of ultrashort laser pulses. However, it was basic researchers that caused a stir. Using relatively simple formulas, they demonstrated how the much-lauded “cold ablation” of picosecond and femtosecond lasers is by no means cold when the parameters and systems chosen are not matching the physical limitations and conditions of beam-material interactions.

  • Safe energy transport made easy – Adaptive processing of complex control data

    Thermoplastic fiber-reinforced pipe.  Source: Fraunhofer IPT

    Pipes for the oil and gas industry which are used to transport raw materials from the seabed to the surface, have to meet specific requirements. They are highly relevant to security because every single pipe must be able to fully withstand the enormous loads of deep-sea production. Hence, controlling the manufacturing process of wound thermoplastic fiber-reinforced pipes is extremely complex. The EU research project “ambliFibre”, consisting of thirteen international partners led by the Aachen-based Fraunhofer Institute for Production Technology IPT, focuses on the manufacturing of these pipesand aims to develop an Industrie-4.0-compliant, highly flexible and reliable control system.

  • Simulation tool for efficient production of non-woven fabrics

    High-tech material non-woven: Project manager Dr. Simone Gramsch has developed the simulation tool FIDYST with her team. Fraunhofer ITWM

    Non-woven fabrics are indispensable to everyday life. A Fraunhofer Institute has developed software that makes the production of non-woven products much more efficient and flexible. With the tool FIDYST, it has been possible for the first time to simulate the movement of fibers in turbulent air currents. A real innovation – and the breakthrough in a theory that is over a hundred years old.

  • When Proteins Shake Hands

    Hybrid protein nanofibers at formation. (Dr Izabela Firkowska-Boden/FSU Jena)

    Materials scientists from Jena (Germany) create innovative nanomaterial from natural substances. Be it in spider silk, wood, the spaces between body cells, in tendons, or as a natural sealant for small wounds: protein fibres are found virtually everywhere in nature. These small protein fibres, also referred to as protein nanofibres by experts, often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.