Energy

A major area of nanotechnology application is that or energy collection, generation and storage. This topic entails articles under these mentioned topics.

  • “Electricity as a Raw Material” at ACHEMA 2018: Green Energy for Sustainable Chemistry

    Demonstrator for the production of ethene from CO2. Fraunhofer IGB

    Hydrogen peroxide, ethene, alcohols: The Fraunhofer lighthouse project “Electricity as a raw material” is developing electrochemical processes that use renewable electricity to synthesize basic chemicals - with the aim of making the chemical industry more sustainable. From June 11 to 15, Fraunhofer UM-SICHT will be presenting the results together with eight other Fraunhofer Institutes at ACHEMA 2018.

  • “The energy transition is not possible without Geotechnics”

    From Monday 29 August to Wednesday 31 August, the 1st “International Conference on Energy Geotechnics” will be held at Kiel University. Around 150 experts from over 26 countries are expected to participate and exchange opinions on geotechnical issues related with the energy transition. The conference is organised by Professor Frank Wuttke’s working group from the Institute of Geosciences at Kiel University. Specialist audience and interested members of the public can register for the conference online until 30 August 2016.

  • A Boost for Biofuel Cells

    Boosting the energy output by storing and bundling the energy of many spontaneous enzyme reactions. Alejandro Posada

    In chemistry, a reaction is spontaneous when it does not need the addition of an external energy input. How much energy is released in a reaction is dictated by the laws of thermodynamics. In the case of the spontaneous reactions that occur in the human body this is often not enough to power medical implants. Now, scientists at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international team of researchers, found a way to boost the energy output by storing and bundling the energy of many spontaneous enzyme reactions. The work is published in the journal Nature Communications.

  • A hydrophobic membrane with nanopores for highly efficient energy storage

    A hydrophobic membrane with nanopores for highly efficient energy storage | Lab set-up of a redox flow battery with the hydrophobic membrane (grey device at the bottom of the image) and two electrolyte reservoirs (bottles with yellow liquid). Image: Philipp Scheffler / DWI

    Storing fluctuating and delivering stable electric power supply are central issues when using energy from solar plants or wind power stations. Here, efficient and flexible energy storage systems need to accommodate for fluctuations in energy gain. Scientists from the Leibniz Institute for Interactive Materials (DWI), RWTH Aachen University and Hanyang University in Seoul now significantly improved a key component for the development of new energy storage systems.

  • A Water-Based, Rechargeable Battery

    Research on the water electrolyte: Empa researcher Ruben-Simon Kühnel connecting a test cell to the charger with the concentrated saline solution. Empa

    Water could form the basis for future, particularly inexpensive rechargeable batteries. Empa researchers have succeeded in doubling the electrochemical stability of water with a special saline solution. This takes us one step closer to using the technology commercially. In the quest to find safe, low-cost batteries for the future, eventually we have to ask ourselves a question: Why not simply use water as an electrolyte? 

  • Applications of Graphene

    Application of Graphene

    In order to get introduced to Graphene, a good point of start would be Graphite. Graphite is a naturally-occurring form of crystalline carbon. It is a native element mineral found in metamorphic and igneous rocks. Regarding its composition, Graphite is a stack of carbon-atom layers.

  • Battery production goes Industrie 4.0

    Thanks to the early warning and emergency management system, impurities in the water supply can be quickly tracked down. Fraunhofer IPA

    A battery that can be charged in seconds, has a large capacity and lasts ten to twelve years? Certainly, many have wanted such a thing. Now the FastStorageBW II project – which includes Fraunhofer – is working on making it a reality. Fraunhofer researchers are using pre-production to optimize large-scale production and ensure it follows the principles of Industrie 4.0 from the outset.

    Imagine you’ve had a hectic day and then, to cap it all, you find that the battery of your electric vehicle is virtually empty. This means you’ll have to take a long break while it charges fully. It’s a completely different story with capacitors, which charge in seconds. However, they have a different drawback: they store very little energy.

  • Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff

    Lithium-Luft-Akkus gelten als Zukunftstechnologie: Theoretisch können sie nicht nur wesentlich leistungsfähiger sein als die derzeit gängigen Lithium-Ionen-Akkus, sondern auch leichter. Noch sind die neuen Energiespeicher allerdings nicht reif für die Praxis – schon nach wenigen Ladezyklen machen die Akkus schlapp. Woran das liegt, haben jetzt Wissenschaftler der Technischen Universität München (TUM) und des Forschungszentrums Jülich untersucht und einen potenziellen Übeltäter entdeckt: Hochreaktiven Singulett-Sauerstoff, der beim Laden des Akkus frei wird.

  • Building the City of Tomorrow together

    Key Visual_Building the City of Tomorrow  BMBF

    Kick-off event marks start of the BMBF’s international campaign “Shaping the Future – Building the City of Tomorrow”. German research networks are looking for inter-national partners worldwide to join their projects for sustainable urban development.

    Bonn, 9 February 2017 Today there are already more people living in cities than in rural regions. This trend is set to continue.

  • Chemists of TU Dresden Develop Highly Porous Material, More Precious than Diamonds

    The framework of DUT-60 holds a pore volume of 5.02 cm3g-1 – the highest specific pore volume one has ever measured among all crystalline framework materials so far. Dr. I. Senkovska, TU Dresden

    World Record of Cavities. Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material is, the more liquids and gases it is able to store. However, a multitude of pores destabilizes the material. In search of the stability limits of such frameworks, researchers of the TU Dresden’s Faculty of Chemistry broke a world record: DUT-60 is a new crystalline framework with the world’s highest specific surface and the highest specific pore volume (5.02 cm3g-1) measured so far among all known crystalline framework materials.

  • Crystals for Superconduction, Quantum Computing and High Efficiency Solar Cells

    Crystals have applications in a wide variety of fields. Photo of a multicrystalline silicon wafer, which serves as the basis of a solar cell.  ©Fraunhofer ISE

    From March 8-10, 2017, an International Conference on Crystal Growth is to be held in Freiburg under the auspices of the German Association of Crystal Growth DGKK and the Swiss Society for Crystallography SGK-SSCR. The conference, jointly organized by the Fraunhofer Institute for Solar Energy Systems ISE, the Crystallography department of the Institute of Earth and Environmental Sciences at the University Freiburg and the University of Geneva, is to be held in the seminar rooms of the Chemistry Faculty of the University of Freiburg. Furthermore, the Young DGKK will hold a seminar for young scientists at Fraunhofer ISE on March 7, 2017.

  • Dauerbetrieb der Tokamaks rückt näher

    Aussichtsreiche Experimente in ASDEX Upgrade / Bedingungen für ITER und DEMO nahezu erfüllt

  • Efficient and Flexible – Fraunhofer ISE Presents Innovations in Storage at Energy Storage Europe

    The test cell has been successfully implemented in research projects at Fraunhofer ISE and duplicated for project partners. Fraunhofer ISE

    The Fraunhofer Institute for Solar Energy Systems ISE is presenting innovative solutions and projects on renewable energy storage and grid integration at the Energy Storage Europe, the leading international trade fair for storage in Düsseldorf, Germany from March 13-15. Fraunhofer ISE is presenting at a joint booth of the Fraunhofer Energy Alliance (Hall 8b, booth B39). Parallel to the trade fair, the 12th International Renewable Energy Storage Conference (IRES) and the 7th Energy Storage Europe Conference (ESE) are taking place.

  • Effizient und sicher: Forscher bereiten Markteintritt für neuartigen Heimenergiespeicher vor

    Einem Wissenschaftlerteam vom EWE-Forschungszentrum NEXT ENERGY ist es gelungen, die Vanadium-Redox-Flow-Technologie für den kosteneffizienten Einsatz in Heimenergiespeichern weiterzuentwickeln. Aktuell wird der Markteintritt vorbereitet. Präsentiert wird das innovative „ResiFlow“-Konzept vom 25. bis 29. April 2016 auf der Hannover Messe.

  • Electric mobility: Opportunities for climate protection in Europe

    Several Smart electric drive cars charging at the Potsdamer Platz in Berlin.

    Getting more electric vehicles on the roads in Europe can significantly reduce CO2 emissions and air pollutants within the European Union. If the share of electric mobility in passenger road transport increases to 80 percent by 2050, the CO2 emissions of the passenger road transport sector in Europe can be reduced by up to 84 percent compared to 2010.

  • Emission measurement: High-precision nanoparticle sensor developed

    Pic 1: The newly developed APCplus exhaust gas analyser has 20 per cent more power in order to count tiny particles faster and more accurately. ©AVL

    A research team based in Graz and Villach has developed an exhaust gas analyser that detects tiny particles faster and more accurately. CTR is the largest non-academic research centre in Carinthia and ranks among Austria’s leading research institutes in the area of smart sensors and systems integration. Its task and objective is to develop innovative sensor technologies (photonic, sensor, micro and nano systems as well as assembly, packaging and integration technologies) for industry and to integrate them in concrete applications. CTR research will therefore play a role in meeting society’s great challenges, such as energy, mobility, health, climate and security. Services range from feasibility studies, simulations and tests to prototyping and system design.

  • Energy hybrid: Battery meets super capacitor

    After stations in Zurich, Kanada and Scotland ERC Starting Grant awardee Stefan Freunberger researches on new energy storage systems at TU Graz. © Lunghammer - TU Graz

    Researcher at TU Graz demonstrates in Nature Materials that it is possible to combine the high-energy density of batteries with the high-power output of super capacitors in a single system – thanks to liquid energy storage materials. Batteries and super capacitors are electrochemical energy storage media, but they are as different as night and day. Both are capable of energy storage and targeted energy release – and yet there are major differences between the two. Batteries store very large amounts of energy that is released slowly but constantly. By contrast, super capacitors can only store small amounts of energy, but they release this energy much faster and more powerfully with large short-term peak currents.

  • Evonik Research Prize for lithium-ion battery test cell with separated electrodes

    A glass ceramic membrane, coated with aluminum and plastic, allows only lithium ions to pass through. It is impermeable to all other components of the electrolyte fluid. Photo: Monika Weiner / TUM

    For years, small rechargeable lithium-ion batteries have reliably supplied billions of portable devices with energy. But manufacturers of high-energy applications such as electric cars and power storage systems seek for new electrode materials and electrolytes. Michael Metzger, researcher at the Technical University of Munich (TUM), has now developed a new battery test cell allowing to investigate anionic and cationic reactions separately. Recently the researcher was honored with the Evonik Research Prize for his work.

  • Faculty of Engineering is doing research for the energy transition

    Marius Langwasser, Marco Liserre and Giovanni De Carne work at the Chair of Power Electronics on the ENSURE research project.  Raissa Nickel/CAU

    600,000 Euro project started at Kiel University
    Nicolaus Copernicus established a new world view in the 16th century. Suddenly, the earth was no longer the centre of the universe. Similarly, the energy transition represents a paradigm shift for our society, not only nationally, as Federal Minister of Education and Research, Johanna Wanka emphasised on the occasion of the Climate Change Conference in Paris in 2015: “It could establish itself internationally as the guiding principle for ending our use of energy produced from fossil fuels.”

  • First Diode for Magnetic Fields

    When the left coil is energized, the magnetic field reaches the right coil (top). When the right coil is energized, the magnetic field does not reach the left one (bottom). Luis Veloso

    Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications. Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the core of any electronic component, being one of the most essential building blocks.