DNA/RNA

A nucleic acid that contains the genetic instructions used in the development and functioning of all modern living organisms. DNA's genes are expressed, or manifested, through the proteins that its nucleotides produce with the help of RNA.

The information found in DNA determines which traits are to be created, activated, or deactivated, while the various forms of RNA do the work.

  • 3D Structure of DNA Forms Defined Room for Dissociated lncRNAs to Activate Gene Expression

    The long non-coding RNA called A-ROD functions within a loop to recruit proteins to the DKK1 gene.  © E. Ntini / Max Planck Institute for Molecular Genetics

    Enhancers are regulatory regions of the DNA, giving rise to “long non-coding RNAs” (lncRNAs), which are known as crucial regulators of gene expression. Scientists from the Max Planck Institute for Molecular Genetics in Berlin now have shown that a lncRNA called A-ROD is only functional the moment it is released from chromatin into the nucleoplasm. In the current issue of Nature Communications the researchers demonstrate that the regulatory interaction requires dissociation of A-ROD from chromatin, with target specificity ensured within the pre-established chromosomal proximity. This can heavily influence our understanding of dynamic regulation of gene expression in biological processes.

  • A Pair of RNA Scissors with Many Functions

    Photo: Dominik Kopp

    Arming CRISPR/Cas systems with an enzyme that also controls the translation of genetic information into protein. CRISPR/Cas systems are known as promising “gene scissors” in the genome editing of plants, animals, and microorganisms by targeting specific regions in their DNA – and perhaps they can even be used to correct genetic defects.

  • Analysis of Complex Protein Interactions

    Structure of the HBZ protein. Based on PyMOL rendering of PDB.

    The composition of specific functional protein complexes in their cellular environment can now be analysed with unprecedented resolution. The team led by junior group leader Dr Julien Béthune at Heidelberg University Biochemistry Center has developed a new technique which allows the scientists to overcome a long-standing hurdle in molecular cell biology. The method called “split-BioID” allows them to analyse context-dependent protein complexes which could not be identified previously.

  • Artificially Produced Cells Communicate with Each Other: Models of Life

    First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope. Image: U. Benz / TUM

    Friedrich Simmel und Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, exchange small chemical signaling molecules to trigger more complex reactions, such as the production of RNA and other proteins. Scientists around the world are working on creating artificial, cell-like systems that mimic the behavior of living organisms. 

  • Big data processing enables worldwide bacterial analysis

    S. Aureus colonies © Nanobay

    Sequencing data from biological samples such as the skin, intestinal tissues, or soil and water are usually archived in public databases. This allows researchers from all over the globe to access them. However, this has led to the creation of extremely large quantities of data. To be able to explore all these data, new evaluation methods are necessary. Scientists at the Technical University of Munich (TUM) have developed a bioinformatics tool which allows to search all bacterial sequences in databases in just a few mouse clicks and find similarities or check whether a particular sequence exists.

  • Block Copolymer Micellization as a Protection Strategy for DNA Origami

    Polyplex Abstract. cfaed

    Scientists from the Center for Advancing Electronics Dresden / TU Dresden and the University of Tokyo led by Dr. Thorsten-Lars Schmidt (cfaed) developed a method to protect DNA origami structures from decomposition in biological media. This protection enables future applications in nanomedicine or cell biology. The precise positioning of individual molecules with respect to one another is fundamentally challenging. DNA Nanotechnology enables the synthesis of nanometer-sized objects with programmable shapes out of many chemically produced DNA fragments.

  • Blut-Abbau im Akkord: Zell-Einwanderer schützen vor Eisenvergiftung

    Blut Abbau im Akkord Zell Einwanderer schützen vor Eisenvergiftung | Können Monozyten nicht in die Leber einwandern und sich zu Eisen-verwertenden Zellen entwickeln, lagert sich giftiges Eisen in Organen wie der Niere ab. (Eisen-frei: blau, Eisen-Protein-Komplex:braun) Abbildung: CSB Massachusetts General Hospital

    Freiburger Forscher entschlüsseln, wie der Körper rote Blutkörperchen abbaut, ohne sich dabei selbst zu vergiften. Der neue Ansatz könnte Komplikationen nach Blutvergiftungen und Hämolyse vermindern.

  • Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

    Methicillin-resistant Staphylococcus aureus (MRSA) (mustard-coloured) engulfed by a red coloured white blood cells (neutrophil granulocyte). National Institute of Allergy and Infectious Diseases (NIAID)

    Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

  • Chemists Create Clusters of Organelles by Mimicking Nature

    Two polymersomes assemble by DNA hybridization: the single DNA strands on the surface of the compartments interconnect, creating an extremely stable DNA bridge. University of Basel

    Scientists from the University of Basel have succeeded in organizing spherical compartments into clusters mimicking the way natural organelles would create complex structures. They managed to connect the synthetic compartments by creating bridges made of DNA between them. This represents an important step towards the realization of so-called molecular factories. The journal Nano Letters has published their results.

  • Computers Made of Genetic Material? - ZDR researchers conduct electricity using DNA-based nanowires

    Scientists at Helmholtz-Zentrum Dresden-Rossendorf conducted electricity through DNA-based nanowires by placing gold-plated nanoparticles on them.

    Tinier than the AIDS virus – that is currently the circumference of the smallest transistors. The industry has shrunk the central elements of their computer chips to fourteen nanometers in the last sixty years. Conventional methods, however, are hitting physical boundaries. An alternative could be the self-organization of complex components from molecules and atoms. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Paderborn University have now made an important advance: the physicists conducted a current through gold-plated nanowires, which independently assembled themselves from single DNA strands. Their results have been published in the scientific journal Langmuir.

  • Cortisol excess hits natural DNA process and mental health hard

    Camilla Glad. Photo: Rickard Dahlén

    High concentrations of the stress hormone, Cortisol, in the body affect important DNA processes and increase the risk of long-term psychological consequences. These relationships are evident in a study from the Sahlgrenska Academy on patients with Cushing’s Syndrome, but the findings also open the door for new treatment strategies for other stress-related conditions such as anxiety, depression and post-traumatic stress. “If these results can be verified and repeated in other studies, they would have significance for future possibilities for treating stress-induced psychological consequences,” says Camilla Glad, postdoctoral researcher at the Department of Internal Medicine and Clinical Nutrition.

  • Data Security in Medical Studies: IT Researchers Break Anonymity of Gene Databases

    DNA string.

    DNA profiles can reveal a number of details about individuals. There are laws in place that regulate the trade of gene data. However, these laws do not apply to an equally relevant type of genetic data, so-called microRNAs. This means that anonymity needs to be strictly maintained in microRNA studies as well. Researchers from the Research Center for IT Security, CISPA, have now been able to show that a few microRNA molecules are sufficient to draw conclusions about study participants. The computer scientists will be presenting their means of attack, and appropriate countermeasures, at the Cebit computer fair in Hannover (Hall 6, Stand C47).

  • Decoding the Regulation of Cell Survival - A Major Step Towards Preventing Neurons from Dying

    Neurite outgrowth assay of neurons expressing GFP. The first and last time point (0 min, 50 min) are pseudocolored in magenta and cyan, respectively. Busskamp Lab CRTD

    An interdisciplinary and international research group led by Dr. Volker Busskamp from the Center for Regenerative Therapies Dresden at the TU Dresden (CRTD) has decoded the regulatory impact on neuronal survival of a small non-coding RNA molecule, so-called miRNA, at the highest resolution to date. This deciphering of gene regulation primes applications for strengthening neurons in order to protect them from neurodegenerative diseases. The extensive systems biology methods used here could become a new standard for the way miRNAs are researched.

  • Die Blitzabwehr der Bakterien: Immunzellen werden direkt beim ersten Kontakt getötet

    Die Blitzabwehr der Bakterien Immunzellen werden direkt beim ersten Kontakt getötet | Die genetische Ausstattung ihres Virulenzplasmids ermöglicht es Bakterien der Gattung Yersinia, die Immunabwehr auszuschalten. HZI/M. Rohde

    Dringen Bakterien in den Körper eines Menschen oder eines Tieres ein, werden sie vom Immunsystem als fremd erkannt. Daraufhin versuchen die Immunzellen, diese Fremdkörper zu beseitigen. Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig haben nun gemeinsam mit Kollegen der Universität Umeå in Schweden herausgefunden, wie es Bakterien der Gattung Yersinia schaffen, Immunzellen direkt beim ersten Kontakt abzutöten: Sie vervielfältigen die genetische Information für ihre krankmachenden Werkzeuge und schießen gleichzeitig Substanzen in die Immunzelle, die sie schnell inaktivieren und umbringen.

  • DigiWest® multiplex protein profiling technology published in Nature Communications

    The NMI is a service provider for Micro Channel Systems. © NMI

    Reutlingen, Germany, September 26, 2016 – The Natural and Medical Sciences Institute at the University of Tübingen (NMI), a private research foundation, and its contract research provider NMI TT Pharmaservices today announced the publication of their proprietary DigiWest® protein profiling method in the peer-reviewed scientific journal Nature Communications.

  • Dissecting bacterial infections at the single-cell level

    Left: a macrophage (nucleus in blue) infected with a non-replicating bacteria in yellow indicated by an arrow and on the right infected with bacteria that has replicated (red). (Picture: Antoine-Emmanuel Saliba)

    Technological advances are making the analysis of single bacterial infected human cells feasible, Würzburg researchers have used this technology to provide new insight into the Salmonella infection process. The study has just been published in “Nature Microbiology”. Infectious diseases are a leading cause of mortality worldwide. The development of novel therapies or vaccines requires improved understanding of how viruses, pathogenic fungi or bacteria cause illnesses.

  • DNA Origami: Building Virus-sized Structures and Saving Costs Through Mass Production

    Self-organization forms „gear-wheels“ from V-shaped building blocks, constructed using DNA origami techniques. In a next step, these gears form tubes with a size comparable with virus capsids. Hendrik Dietz / TUM

    It is the double strands of our genes that make them so strong. Using a technique known as DNA origami, biophysicist Hendrik Dietz has been building nanometer-scale objects for several years at the Technical University of Munich (TUM). Now Dietz and his team have not only broken out of the nanometer realm to build larger objects, but have also cut the production costs a thousand-fold. These innovations open a whole new frontier for the technology.

  • DNA repair: a new letter in the cell alphabet

    A complex tag for DNA-repair: 3D cartoon showing the linkage of ADP-ribose to the amino acid serine in a protein (turquoise). Max Planck Institute for Biology of Ageing

    Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins” to the damaged parts within the DNA. To do this, an elaborate protein language has evolved. Now scientists from the Max Planck Institute for Biology of Ageing have discovered the way a new letter of this alphabet is used in cells. This novel protein modification, called serine ADP-ribosylation, has been overlooked by scientists for decades. This finding reveals how important discoveries may be hidden in scientific “blind spots”. Results reveal how discoveries may be hidden in scientific “blind spots”.

  • DNA structure influences the function of transcription factors

    Spatial arrangement of the binding site and neighbouring segments modulates gene activity

  • Doppelschlag gegen Bakterien und Viren

    Doppelschlag gegen Bakterien und Viren picture1 | Das Bakterium Staphylococcus aureus (rot) bildet häufig Resistenzen gegen Antibiotika aus und ist besonders für Patienten gefährlich, die bereits unter einer Infektion mit dem AIDS-Erreger HIV leiden Abbildung: HZI/M. Rohde

    Dualer Wirkstoff hemmt die Vermehrung des AIDS-Erregers HIV und von resistenten MRSA-Bakterien zugleich, indem er sowohl virale als auch baktrielle Enzyme hemmt.