Cell biology

  • “Personalized Tumor Therapy” at Fraunhofer ITEM – project group will become an institute division

    Isolation of a single disseminated cancer cell by micromanipulation. Knowledge about the characteristics of such a single cell provides the basis for development of more effective systemic therapies. Photo: Ralf Mohr; Fraunhofer ITEM

    (Hannover, Germany) The Fraunhofer Project Group for Personalized Tumor Therapy will become a division of the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM in Hannover as of January 2017 and will thus be included in the financing model of the Fraunhofer-Gesellschaft. The project group was founded in December 2010 as a research collaboration between the Fraunhofer-Gesellschaft, the Land of Bavaria, and the University of Regensburg. During the past five years, the team of scientists in Regensburg has been organizationally attached to the Fraunhofer ITEM in Hannover, funded by the Bavarian government.

  • A Boost for Biofuel Cells

    Boosting the energy output by storing and bundling the energy of many spontaneous enzyme reactions. Alejandro Posada

    In chemistry, a reaction is spontaneous when it does not need the addition of an external energy input. How much energy is released in a reaction is dictated by the laws of thermodynamics. In the case of the spontaneous reactions that occur in the human body this is often not enough to power medical implants. Now, scientists at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international team of researchers, found a way to boost the energy output by storing and bundling the energy of many spontaneous enzyme reactions. The work is published in the journal Nature Communications.

  • A closer look at brain organoid development

    Cerebral organoid flowchart.

    Heidelberg, 10 March 2017 - How close to reality are brain organoids, and which molecular mechanisms underlie the remarkable self-organizing capacities of tissues? Researchers already have succeeded in growing so-called “cerebral organoids” in a dish - clusters of cells that self-organize into small brain-like structures. Juergen Knoblich and colleagues have now further characterized these organoids and publish their results today in The EMBO Journal. They demonstrate that, like in the human brain, so-called forebrain organizing centers orchestrate developmental processes in the organoid, and that organoids recapitulate the timing of neuronal differentiation events found in human brains.

  • A CLOUD of possibilities: Finding new therapies by combining drugs

    Immunofluorescence analysis of prostate cancer cells treated with 15mM flutamide, 35 µM PPC or the combination for 24 h. Scale Bar 20 µM  © Nature Chemical Biology / Stefan Kubicek

    The CeMM Library of Unique Drugs (CLOUD) is the first condensed set of FDA-approved drugs representing the entire target and chemical space of all clinical compounds. Its potential was shown in a combinatorial high throughput screen at the CeMM chemical screening platform, published in Nature Chemical Biology: by testing all CLOUD compounds in combination with each other, a pair of hitherto unrelated drugs proved to be highly effective against multiple prostate cancer cell lines known for their resistance to therapy. Testing CLOUD combinations in this highly automated procedure could pave the way for a new era of drug repurposing and provide novel strategies for personalized medicine.

  • A Molecular Switch May Serve as New Target Point for Cancer and Diabetes Therapies

    Signal receptor-containing vesicles (red) form on the inside of the cell membrane (brown) and bud off into the cell. Visualization: Thomas Splettstößer

    If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

  • A New T-cell Population for Cancer Immunotherapy

    Picture of a healthy human T-cell.

    Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

    T lymphocytes (short T cells) are a special type of cells that recognize germs and protect our body from infections. Their second important job is to ride the body of harmed cells, such as tumor cells. T cells are able to identify tumor cells because they look different than normal healthy cells. The way in which they do this is governed by surface expression of T-cell receptors (TCR). Each receptor interacts with a specific molecule on the surface of the target cell.

  • ALGEN REVOLUTIONIEREN 3D-DRUCK VON ZELLEN

    Felix Krujatz erhält für seine Doktorarbeit auf dem Gebiet der Algenbiotechnologie den Nachwuchsförderpreis der Sächsischen Akademie der Wissenschaften. Kirsten Mann

    Wissenschaftler der TU Dresden gewinnt Nachwuchsförderpreis der Sächsischen Akademie der Wissenschaften / Algenbiotechnologie revolutioniert 3D-Bioprinting / weltweit erster 3D-gedruckter Bioreaktor mit OLEDS macht neue Untersuchungsmethoden möglich. Felix Krujatz, Wissenschaftlicher Mitarbeiter an der Fakultät Maschinenwesen der TU Dresden, erhält für seine Doktorarbeit „Entwicklung und Evaluierung neuer Bioreaktorkonzepte für phototrophe Mikroorganismen“ den Nachwuchsförderpreis der Sächsischen Akademie der Wissenschaften zu Leipzig. Seine Forschungsergebnisse enthalten mehrere Weltneuheiten auf dem Gebiet der Biotechnologie und können u.a. das Bioprinting menschlicher Zellen für regenerative Therapien revolutionieren sowie eine neue Generation von Bioreaktoren hervorbringen. Der Preis wird am 09. Dezember um 16:00 Uhr in Leipzig öffentlich verliehen.

  • An injectable guidance system for nerve cells

    Dr.-Ing. Laura De Laporte and PhD student Jonas Rose analyze the orientation of nerve cells (red) along the paths provided by gel rods (green). J. Hillmer, DWI

    In many tissues of the human body, such as nerve tissue, the spatial organization of cells plays an important role. Nerve cells and their long protrusions assemble into nerve tracts and transport information throughout the body. When such a tissue is injured, an accurate spatial orientation of the cells facilitates the healing process. Scientists from the DWI – Leibniz Institute for Interactive Materials in Aachen developed an injectable gel, which can act as a guidance system for nerve cells. They recently published their results obtained from cell culture experiments in the journal ‚Nano Letters‘.

  • Analysis of Complex Protein Interactions

    Structure of the HBZ protein. Based on PyMOL rendering of PDB.

    The composition of specific functional protein complexes in their cellular environment can now be analysed with unprecedented resolution. The team led by junior group leader Dr Julien Béthune at Heidelberg University Biochemistry Center has developed a new technique which allows the scientists to overcome a long-standing hurdle in molecular cell biology. The method called “split-BioID” allows them to analyse context-dependent protein complexes which could not be identified previously.

  • Bacteria Free Themselves with Molecular “Speargun”

    Macrophage infected with Francisella novicida (magenta) assembling a dynamic nano-speargun (green). University of Basel, Biozentrum

    Many bacteria are armed with nano-spearguns, which they use to combat unwelcome competitors or knockout host cells. The pathogen responsible for tularemia, a highly virulent infectious disease, uses this weapon to escape from its prison in cells defending the host. Researchers from the Biozentrum of the University of Basel report on this bacterial strategy in the current issue of “Nature Communications”.

    Tularemia is an infectious disease that mostly affects rabbits and rodents, but also humans can become infected. The cause of this serious disease is the bacterium Francisella tularensis.

  • Bacterial Pac Man molecule snaps at sugar

    The P domain (yellow) patrols with its mouth open until it encounters a sialic acid molecule (purple). This movement was analyzed with distance measurements using the spin markers shown in blue.  © Dr. Gregor Hagelüken/Uni Bonn

    Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

  • Biological system with light switch: new findings from Graz

    Schematic representation of the illumination of the sensor domain of a photo-receptor and the molecular propagation of the light signal to the effector (in red on the right-hand edge of the image). © TU Graz/IBC

    For the first time ever, researchers at TU Graz and the Medical University of Graz have managed to functionally characterise the three-dimensional interaction between red-light receptors and enzymatic effectors. The results, with implications for optogenetics, have been published in Science Advances. The aim of optogenetics is to control genetically modified cells using light. A team of Graz scientists led by Andreas Winkler from the Institute of Biochemistry at TU Graz have set a milestone in the future development of novel red-light regulated optogenetic tools for targeted cell stimulation.

  • Block Copolymer Micellization as a Protection Strategy for DNA Origami

    Polyplex Abstract. cfaed

    Scientists from the Center for Advancing Electronics Dresden / TU Dresden and the University of Tokyo led by Dr. Thorsten-Lars Schmidt (cfaed) developed a method to protect DNA origami structures from decomposition in biological media. This protection enables future applications in nanomedicine or cell biology. The precise positioning of individual molecules with respect to one another is fundamentally challenging. DNA Nanotechnology enables the synthesis of nanometer-sized objects with programmable shapes out of many chemically produced DNA fragments.

  • Blood pressure medication paves the way for approaches to managing Barrett's syndrome

    Svein Olav Bratlie

    New ways of using mechanisms behind certain blood pressure medications may in the future spare some patient groups both discomfort and lifelong concern over cancer of the esophagus. This, in any case, is the goal of several studies of patients with Barrett's syndrome at Sahlgrenska Academy. “If we could filter out those who are not at greater risk, it would represent huge gains for both patients and health care providers,” says Svein Olav Bratlie, a researcher in gastro surgery and clinician at Sahlgrenska University Hospital. It is estimated that between one and two percent of the Swedish population has Barrett's syndrome, a condition in which the membrane in the lower part of the esophagus becomes more like that of the intestine and more acid-resistant. Barrett's syndrome is preceded by the common reflux affliction that involves long-term leakage of stomach acid up into the esophagus.

  • Brought to Light – Chromobodies Reveal Changes in Endogenous Protein Concentration in Living Cells

    Antigen-Mediated-ChromoBody-Stabilization (AMCBS). NMI

    Scientists at the Natural and Medical Sciences Institute (NMI) in Reutlingen and the Eberhard Karls University of Tuebingen have developed new molecular probes to monitor and quantify changes in the concentration of endogenous proteins by live-cell fluorescence microscopy. In a study now published in Molecular & Cellular Proteomics, Keller et al. describe how fluorescently labeled intrabodies (so-called chromobodies) are stabilized in the presence of their target proteins. Based on this newly uncovered property of chromobodies, the authors present a broadly applicable strategy to optimize chromobodies in order to visualize and measure changes of endogenous target proteins within living cells. 

  • Call for Abstracts – The Molecular Basis of Life

    GBM Conference "Molecular Basis of Life"

    The international fall conference of the German Society for Biochemistry and Molecular Biology (GBM) will take place from Sunday, September 24th to Wednesday, September 27th, 2017 at the Ruhr University Bochum, Germany.

    The (German) Society for Biochemistry and Molecular Biology (Gesellschaft für Biochemie und Molekularbiologie, GBM) is the association of about 5300 scientists working in the field of Molecular Life Sciences. Most members of the GBM are German scientists from universities, industry and other research institutions, covering the entire spectrum of basic and applied Molecular Life Sciences.
    The aim of the GBM is to promote basic and applied research as well as education in the fields of biochemistry, molecular biology and molecular medicine.

  • Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

    Methicillin-resistant Staphylococcus aureus (MRSA) (mustard-coloured) engulfed by a red coloured white blood cells (neutrophil granulocyte). National Institute of Allergy and Infectious Diseases (NIAID)

    Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

  • Cancer Research - How Cells Die by Ferroptosis

    A Fibroblast Undergoing Ferroptosis. Source: Helmholtz Zentrum München

    Ferroptosis is a recently discovered form of cell death, which is still only partially understood. Scientists at the Helmholtz Zentrum München have now identified an enzyme that plays a key role in generating the signal that initiates cell death. Their findings, published in two articles in the journal ‘Nature Chemical Biology’, could now give new impetus to research into the fields of cancer, neurodegeneration and other degenerative diseases. The term ferroptosis was first coined in 2012. It is derived from the Greek word ptosis, meaning “a fall”, and ferrum, the Latin word for iron, and describes a form of regulated necrotic cell death in which iron appears to play an important role.

  • Cells adapt ultra-rapidly to zero gravity

    Front plate of the experiment equipment. C. Thiel and Airbus DS)

    Mammalian cells fully adapt to zero gravity in less than a minute. Real-time readings on the International Space Station (ISS) reveal that cells compensate ultra-rapidly for changes in gravitational conditions. This new discovery was achieved by an international team headed by scientists at the University of Zurich.

    Mammalian cells are optimally adapted to gravity. But what happens in the microgravity environment of space if the earth’s pull disappears? Previously, many experiments exhibited cell changes – after hours or even days in zero gravity. Astronauts, however, returned to Earth without any severe health problems after long missions in space, which begs the question as to how capable cells are of adapting to changes in gravity.

  • Cellular Valve Structure Opens Up Potential Novel Therapies

    Structure of a volume-regulated chloride channel (center: ribbon diagram, right: selectivity filter, left: regions with positively charged amino acids). Raimund Dutzler, UZH

    Biochemists at the University of Zurich have determined the detailed structure of a volume-regulated chloride channel. This cellular valve is activated in response to swelling to prevent the cell from bursting. The protein also plays an important role in the uptake of chemotherapeutics and the release of neurotransmitters after a stroke. The controlled regulation of its activity thus opens up a promising strategy for novel therapies.