Catalysis

Catalysis is the increase in the rate of a chemical reaction due to the participation of an additional substance called a catalyst. With a catalyst, reactions occur faster and require less activation energy. Because catalysts are not consumed in the catalyzed reaction, they can continue to catalyze the reaction of further quantities of reactant. Often only tiny amounts are required.

  • Chemists of TU Dresden Develop Highly Porous Material, More Precious than Diamonds

    The framework of DUT-60 holds a pore volume of 5.02 cm3g-1 – the highest specific pore volume one has ever measured among all crystalline framework materials so far. Dr. I. Senkovska, TU Dresden

    World Record of Cavities. Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material is, the more liquids and gases it is able to store. However, a multitude of pores destabilizes the material. In search of the stability limits of such frameworks, researchers of the TU Dresden’s Faculty of Chemistry broke a world record: DUT-60 is a new crystalline framework with the world’s highest specific surface and the highest specific pore volume (5.02 cm3g-1) measured so far among all known crystalline framework materials.

  • ERC Grant: Nanopartikel-Katalysatoren in Form bringen

    Beatriz Roldán Cuenya erhält eine renommierte Förderung vom Europäischen Forschungsrat. © RUB, Marquard

    Prof. Dr. Beatriz Roldán Cuenya von der Ruhr-Universität Bochum (RUB) erhält einen der renommierten Consolidator Grants vom Europäischen Forschungsrat (ERC). Die Förderung beläuft sich auf zwei Millionen Euro für fünf Jahre. Die Wissenschaftlerin strebt an, mit den Mitteln neue Einblicke in die katalytischen Fähigkeiten von Nanopartikeln zu gewinnen, insbesondere wie sich Größe, Form und chemischer Zustand der Partikel während einer katalytischen Reaktion ändern. Winzige Metallpartikel, gerade einmal 1 bis 50 Nanometer groß, können als Katalysatoren für verschiedene Reaktionen dienen. Mehrere Parameter beeinflussen die katalytische Aktivität der Nanopartikel: ihre Größe und Form, das Trägermaterial, an das die Partikel gebunden sind, die Umgebung sowie der chemische Zustand der Partikel, also zum Beispiel ob sie als reines Metall oder als Oxid vorliegen.

  • Fuel Cells for Hydrogen Vehicles are Becoming Longer Lasting

    The new electrocatalyst for hydrogen fuel cells consists of a thin platinum-cobalt alloy network and, unlike the catalysts commonly used today, does not require a carbon carrier. Gustav Sievers

    An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable. The new process is industrially applicable and can be used to further optimize fuel cell powered vehicles without CO2 emissions.

  • Lonely Atoms, Happily Reunited

    Lonely Atoms Happily Reunited picture 2 | Two platinum atoms on the magnetite surface can bond, if they are attached to CO molecules. Image: TU Wien

    The remarkable behaviour of platinum atoms on magnetite surfaces could lead to better catalysts. Scientists at TU Wien (Vienna) can now explain how platinum atoms can form pairs with the help of carbon monoxide.

    At first glance, magnetite appears to be a rather inconspicuous grey mineral. But on an atomic scale, it has remarkable properties: on magnetite, single metal atoms are held in place, or they can be made to move across the surface. Sometimes several metal atoms on magnetite form small clusters. Such phenomena can dramatically change the chemical activity of the material. Atomic processes on the magnetite surface determine how well certain metal atoms can serve as catalysts for chemical reactions.

  • Methan nutzen statt abfackeln

    Chemiker an der ETH Zürich und am Paul Scherrer Institut haben einen neuen direkten Weg gefunden, gasförmiges Methan in flüssiges Methanol umzuwandeln. Damit könnte es in Zukunft für die Industrie interessant werden, das Gas vermehrt zu nutzen, statt es wie bisher oft ungenutzt zu verbrennen.

  • Nature knows how to do it – as does research, in principle

    Nature knows how to do it as does research in principle | The researchers make a distinction between three different basic approaches to artificial photosynthesis. However, due to its efficiency advant

    As part of the "LightChEC" research project at the University of Zurich, Empa scientists are working with other researchers on a novel method of artificial photosynthesis – photocatalysis, which uses a purely chemical process to split water into hydrogen and oxygen. Unlike other methods, it does not involve the electrolysis of water. However, the practical application of photocatalysis is still some way off.

  • Neuer Katalysator für die Wasserstoffproduktion

    Neuer Katalysator für die Wasserstoffproduktion | Es müssen nicht immer Edelmetalle sein: Ulf-Peter Apfel und seine Kollegen haben ein neues vielversprechendes Katalysatormaterial entdeckt. Photo: RUB, Kramer

    Das Mineral Pentlandit ist ein potenzieller neuer Katalysator für die Wasserstoffproduktion. Forscher beschreiben in der Zeitschrift „Nature Communications“, dass es genauso effizient arbeitet wie heute übliche Platinelektroden. Im Gegensatz zu Platin ist Pentlandit günstig und kommt häufig auf der Erde vor. Ein Team um Dr. Ulf-Peter Apfel und Prof. Dr. Wolfgang Schuhmann von der Ruhr-Universität Bochum beschreibt die Ergebnisse gemeinsam mit Kollegen vom Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr und der Technischen Universität in Bratislava.

  • New Approach to Terpene Syntheses

    Molecular capsule: on the left, the around 1.4 cubic nanometer-large cavity is highlighted in blue. On the right, the cohesion of the capsule via hydrogen bonds (green dashed lines) is visible. University of Basel, Department of Chemistry

    Terpenes are natural products that are often very difficult to synthesize in the laboratory. Chemists from the University of Basel have now developed a synthesis method that mimics nature. The decisive step takes place inside a molecular capsule, which enables the reaction. The findings were recently published in the journal Nature Catalysis.

  • O2 Stable Hydrogenases for Applications

    Dr. James Birrell & Dr. Patricia Rodríguez Maciá. MPI CEC

    A team of researchers from the Max Planck Institute for Chemical Energy Conversion and the MPI für Kohlenforschung in Mülheim an der Ruhr have succeeded in optimizing naturally occurring catalysts (hydrogenases) for application. Hydrogen gas (H2) has been proposed as an ideal energy vector. It can be produced from water, ideally using renewable energy sources and using an efficient catalyst to split water into H2 and oxygen (O2).

  • Photosynthese als Vorbild - Chemiker entwickeln künstliches Blatt

    Ohne Photosynthese kein Leben: Ständig stellen Pflanzen Zucker für die eigene Versorgung her. Der für Mensch und Tier notwendige Sauerstoff ist eigentlich nur ein Nebenprodukt. Doch noch immer sind die komplexen Vorgänge in den Blättern nicht vollständig verstanden. Dabei könnten sie wertvolle Hinweise für saubere Energiequellen und nachhaltige Energiespeicher liefern. In der renommierten Fachzeitschrift „Angewandte Chemie“ stellen die Ulmer Professoren Carsten Streb und Timo Jacob nun ein „künstliches Blatt“ vor, mit dem sich die Umwandlung von Wasser zu Sauerstoff nachvollziehen und eventuell optimieren lässt.

  • RUB-Forscher nutzen Cyanobakterien für Produktion von Chemikalien

    Bochumer Forscher haben Cyanobakterien so verändert, dass sie die Synthese wertvoller Feinchemikalien katalysieren. Die für die enzymatische Katalyse notwendige Energie produzieren die Mikroorganismen durch Fotosynthese selbst. Die Ergebnisse veröffentlichte das Team um Prof. Dr. Robert Kourist in der Zeitschrift „Angewandte Chemie“.

  • Scanning Tunneling Microscopy Measurements Identify Active Sites on Catalysts

    The analysis of the tunneling currents of a scanning tunneling microscope reveal the active sites on the catalyst surface. Image: Christoph Hohmann / NIM

    Chemistry live: Using a scanning tunneling microscope, researchers at the Technical University of Munich (TUM) were able for the very first time to witness in detail the activity of catalysts during an electro-chemical reaction. The measurements show how the surface structure of the catalysts influences their activity. The new analysis method can now be used to improve catalysts for the electrochemical industry.

  • Supported Liquid Metal Catalysts – a New Generation of Reaction Accelerators

    A diagram illustrating the processes at the catalytic surface of a liquid drop of gallium containing small amounts of palladium during the catalytic dehydrogenation of n-butane.  Image: FAU/Mathias Grabau and Florian Maier

    Catalysts are agents that initiate chemical reactions, speed them up or significantly increase the yield of the desired product. New and improved catalysts are thus considered the key to creating more sustainable and efficient production processes in the chemical industry. In a joint research project, five professors at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and their teams have recently discovered how to bypass the known drawbacks of the technical catalysts that are currently in use by means of a new material concept that makes the creation of significantly more efficient catalysts possible.

  • The Working of a Molecular String Phone

    Time-lapse images show that the enzyme ‘breathes’ during turnover: it expands and contracts aligned with the catalytic sub-steps. Its two halves communicate via a string of water molecules. Jörg Harms / MPSD

    Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

  • Tiny microbots that can clean up water

    Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

  • Viewing a catalytic reaction in action

    An international team of researchers monitors the steps of a chemical reaction mediated by a metallic surface

  • Water Splitting Observed on the Nanometer Scale

    At rough areas of a catalyst surface, water is split into hydrogen and oxygen in a more energy efficient way than at smooth areas. MPI-P, License CC-BY-SA

    Whether as a fuel or in energy storage: hydrogen is being traded as the energy carrier of the future. To date, existing methodologies have not been able to elucidate how exactly the electrochemical process of water splitting into hydrogen and oxygen takes place at the molecular scale on a catalyst surface. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now developed a new method to investigate such processes "live" on the nanometer scale. The new detailed insights into the splitting of water on gold surfaces could aid the design of energy-efficient electro-catalysts.