Blood

  • Blood flow under magnetic magnifier

    Arterial Spin Labeling allows to visualize vascular territories in the brain without the need of contrast agents – one of many applications. © Photo Fraunhofer MEVIS

    A training workshop at Fraunhofer MEVIS will deliver information about the possibilities of perfusion magnetic resonance imaging.

    When diagnosing strokes and heart diseases or looking at tumors, perfusion magnetic resonance imaging offers a gentler way to capture the blood flow circulation in the organs. However, the method is far from being implemented to its full potential at many clinics. The Fraunhofer Institute for Medical Image Computing MEVIS in Bremen, Germany is organizing a workshop entitled “Measurement of Perfusion and Capillary Exchange” from June 21 to 23 to promote adoption of the method. The event will provide information about its applications and the current state of research.

  • Cardiac diseases: when less is more

    PRECISE-DAPT Score. Department of Cardiology, Inselspital, Bern University Hospital

    Which patient will benefit most from a platelet inhibitor after a heart operation? The Department of Cardiology of Inselspital, Bern University Hospital, can answer this question with a new test, which has been published in "The Lancet".

    Spending less time in hospital, having to take less medication after surgery – both are concerns shared by most patients. In a study published this month, the Department of Cardiology of Inselspital addressed this concern. In accordance with the principle of weighing benefits and risks, upon which all medical treatments are based, it took an in-depth look at medicinal after-care from the patients’ perspective.

  • Deep Learning predicts hematopoietic stem cell development

    What are they going to be? Hematopoietic stem cells under the microscope: New methods are helping the Helmholtz scientists to predict how they will develop. Source: Helmholtz Zentrum München

    Autonomous driving, automatic speech recognition, and the game Go: Deep Learning is generating more and more public awareness. Scientists at the Helmholtz Zentrum München and their partners at ETH Zurich and the Technical University of Munich (TUM) have now used it to determine the development of hematopoietic stem cells in advance. In ‘Nature Methods’ they describe how their software predicts the future cell type based on microscopy images.

  • Image correction software simplifies quantification of stem cells

    Mosaic image of a mouse brain slice improved by the software BaSiC. Image: Tingying Peng / TUM/HMGU

    Today, tracking the development of individual cells and spotting the associated factors under the microscope is nothing unusual. However, impairments like shadows or changes in the background complicate the interpretation of data. Now, researchers at the Technical University of Munich (TUM) and the Helmholtz Zentrum München have developed a software that corrects images to make hitherto hidden development steps visible.

    When stem cells develop into specialized cells, this happens in multiple steps. But which regulatory proteins are active during the decisive branching on the development path? Using so-called time-lapse microscopy, researchers can observe individual cells at very high time resolutions and, using fluorescent labelling, they can recognize precisely which of these proteins appear when in the cell.

  • Immune cells derived from specialised progenitors

    In the lab (from left): Prof. Dr. Joachim Schultze, Patrick Günther and Dr. Andreas Schlitzer from LIMES-Institute at University of Bonn. © Foto: Volker Lannert/Uni Bonn

    Dendritic cells are gatekeepers of Immunity. Up to now dendritic cell subtypes were thought to develop from one common progenitor. Now, in a joint effort, researchers from A*STAR Singapore Immunology Network, LIMES-Institute and cluster of excellence ImmunoSensation from University of Bonn and the German Center for Neurodegenerative Diseases were able to show with single cell resolution that this important component of the human immune system develops from specialized progenitors. These findings are now published in “Science” and have implications for the development and optimization of vaccines.

  • Less Animal Experiments on the Horizon: Multi-organ Chip Awarded

    The illustrations show in comparison how the blood circulation in the human body (left) and the channels on the multi-organ chip (right) supply the liver, the kidneys and other organs or tissues. © Fraunhofer IWS Dresden

    Dresden Fraunhofer engineers have developed a so-called "multi-organ chip". This microsystem from the Fraunhofer Institute for Material and Beam Technology IWS Dresden, which has now received an "EARTO Innovation Award" in Brussels, simulates the blood circulation and the organs of animals or humans. The "lab-on-a-chip" will help industry to develop new drugs and cosmetics more quickly than before. But what is even more important: "We see good opportunities to eliminate the need for many animal experiments," emphasized Dr. Udo Klotzbach, Business Unit Manager Microtechnology at Fraunhofer IWS. In addition, this system opens the door to individualized medicine a little further, in which doctors can determine an exactly fitting therapy for each patient within days instead of years.

  • Motor Neurons Tell Blood Vessels Where To Go

    Confocal microscopy image showing a spinal cord section of a mouse embryo (embryonic day 11.5). The blood vessels (red) grow around the motor neurons (green). Patricia Himmels und Carmen Ruiz de Almodóvar

    Heidelberg Neuroscientists have identified a critical regulator for blood vessel growth in the developing embryonic spinal cord. The research group under the direction of Dr Carmen Ruiz de Almodóvar of the Heidelberg University Biochemistry Center discovered that special nerve cells known as motor neurons control this process. This new insight into the nature of the interrelationship between the nervous system and the vascular system will help in understanding diseases of the central nervous system. These findings were published in the journal "Nature Communications".

  • Nose2Brain – Better Therapy for Multiple Sclerosis

    At the start of the project the N2B consortium met at Fraunhofer IGB in Stuttgart. Fraunhofer IGB

    Over the next few years, in a research project funded by the EU, an international consortium is developing a new technology for a better treatment of multiple sclerosis. The idea of the innovative “Nose2Brain” approach is to transport a special active substance directly through the nose into the central nervous system. For this purpose, the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB is working on an active ingredient formulation which is introduced direct into the Regio olfactoria by means of a special applicator and which can release the active ingredient there over a prolonged period of time.

  • Pharmacoscpy: Next-Generation Microscopy

    Graphical abstract of the Pharmacoscopy method.  Vladimer Gregory/CeMM

    A novel microscopy method allows unprecedented insights into the spatial organization and direct interactions of immune cells within blood and other liquid multi-lineage tissues. The assay, called “Pharmacoscopy”, developed and patented by scientists from CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, is able to determine immunomodulatory properties of drugs within large libraries on immune cells in high resolution and high throughput. Introduced in Nature Chemical Biology, Pharmacoscopy enables new possibilities for drug discovery, particularly in cancer immunotherapy, personalized medicine, and the research on signaling pathways of the immune system.

  • Potential New Approach to the Treatment of Multiple Sclerosis

    EGLF7 retains immune cells in the perivascular space in MS lesions. photo/©: Catherine Larochelle, Timo Uphaus, Frauke Zipp

    A prospective new method of treating patients with multiple sclerosis has been proposed by researchers of the Mainz University Medical Center working in cooperation with researchers of the University of Montreal. In model trials and experiments employing human endothelial cells, they discovered that the EGFL7 protein hinders the migration of immune cells into the central nervous system by stabilizing the blood-brain barrier. These findings have recently been published in Nature Communications.

  • Rapid Diagnosis of Diseases With Novel Blood Test

    The artistic rendering of the microscopic view into the measurement chip shows the trajectories of many individual blood cells flowing from right to left. ©Daniel Klaue/ZELLMECHANIK DRESDEN GmbH

    Prof. Dr. Jochen Guck, research group leader at the Biotechnology Center of TU Dresden (BIOTEC), together with medical colleagues from the University Hospital Carl Gustav Carus Dresden and partnering institutes from Dresden (Germany), Cambridge (UK), Glasgow (UK), and Stockholm (Sweden) use a technique called “real-time deformability cytometry” to screen thousands of cells in a drop of blood for unusual appearance and deformability in a matter of minutes.

  • Rare blood disease improves the defence against germs

    Blood smear of a myeloproliferative neoplasia patient with a significant increase in the number of platelets (purple) as compared to the clearly larger red blood cells. Ed Uthman/CC BY 2.0

    Researchers of the HZI and of the University of Magdeburg find increased immune reaction associated with a rare bone marrow disease. Patients afflicted by myeloproliferative neoplasia – a group of chronic malignant bone marrow diseases – bear a mutation in their haematopoietic stem cells. The mutation leads to the bone marrow producing too many blood cells, which thickens the blood. This can lead to blood clots or clogged blood vessels, which may trigger, e.g., a stroke. Scientists of the Helmholtz Centre for Infection Research (HZI) in Braunschweig and of the Otto von Guericke University Magdeburg recently discovered that certain cells of the immune system also bear this mutation in those patients that possess a particularly large number of altered stem cells. The impact of this scenario on the defence against pathogens was investigated in mice by the scientists. They published their results in Leukemia.

  • Stem cell transplants: activating signal paths may protect from graft-versus-host disease

    Cross-section of mouse intestines: OLFM4-stem cells (red) are crucial for epithel regeneration. During treatment leading up to allo-hematopoietic stem cell transplantation, they are often destroyed.  Poeck / TUM

    Stem cell transplants can save lives, for example in patients with leukemia. However, these treatments are not free of risks. One complication that may occur is graft-versus-host disease (GVHD), basically donor-derived immune cells attacking the recipient’s body. A team at the Technical University of Munich (TUM) has identified molecular mechanisms that may protect patients against this dangerous response in the future. The key to preventing GVHD is in the gut.

  • Supervised Exercise Training Helps Patients with Heart Failure

    The major signs and symptoms of heart failure.

    Contrary to what was previously assumed, physical exercise does not lead to harmful ventricular enlargement. Researchers at the Technical University of Munich (TUM) and the Norwegian University of Science and Technology in Trondheim (NTNU) have disproved this earlier hypothesis and issued recommendations for designing a training program for persons with congestive heart failure. Congestive heart failure is among the most frequent causes of death in industrialized countries. As a consequence of this condition, the patient’s heart is no longer capable of adequately supplying the body with blood and oxygen. Until now, the prognosis for congestive heart failure has been poor and comparable to that of cancer.

  • T cells in babies give clues to who will develop type 1 diabetes

    Recently discovered special cells in babies help to understand why some children develop type 1 diabetes whereas others do not. © Stephan Wiegand

    The research group of Prof. Ezio Bonifacio, group leader and Director at the DFG-Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at TU Dresden, and group leader at DZD-Paul Langerhans Institute Dresden, introduces a new understanding of cellular mechanisms occurring in babies having a high risk of developing type 1 diabetes. Physicians are observing an increase in the number of new cases of the disease each year among children and adolescents. In Germany, approximately 4 in every 1000 people suffer from type 1 diabetes.