3D Printing

3D printing, also known as additive manufacturing (AM), refers to various processes used to synthesize a three-dimensional object. In 3D printing, successive layers of material are formed under computer control to create an object. These objects can be of almost any shape or geometry and are produced from a 3D model or other electronic data source.

  • 3D printed optical lenses, hardly larger than a human hair

    3D printed optical lenses hardly larger than a human hair | Complex 3D printed objective on an optical fiber in a syringe. University of Stuttgart/ 4th Physics Institute

    3D printing enables the smallest complex micro-objectives

    3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines are written sequentially, even the most complex devices could be realized fast and easy. This method is now also available for optical elements. Researchers at University of Stuttgart in Germany have used an ultrashort laser pulses in combination with optical photoresist to create optical lenses which are hardly larger than a human hair.

  • 3D Printers to Produce Precisely Fitting Plastic Parts for Lightweight Construction

    The researchers use continuous fibres in their fibre-reinforced plastics. Credits: Koziel/TUK

    3D printers are becoming ever more important: they can be used to quickly produce the desired products. Researchers at Technische Universität Kaiserslautern are also working with this system: in order to optimize the printing result for plastics, they examine the conditions required during printing. In this context, the composition of the material also plays a role. With their fibre-reinforced plastic, they rely on fibres that are completely built into the plastic like a string. This is interesting, for example, for the lightweight construction of vehicles. They will present their work at the Hannover Messe from 1 to 5 April at the Rhineland-Palatinate research stand (Hall 2, Stand B40).

  • 3D Printing and International Security

    Cover PRIF Report No. 144  HSFK/PRIF

    PRIF Report No. 144 analyzes risks and challenges of the emerging technology of additive manufacturing.

    3D printing – or additive manufacturing – is a challenging dual-use technology: One and the same device can be used for printing toys and guns. Marco Fey assesses the risks of this emerging technology in the new PRIF Report No. 144 “3D Printing and International Security: Risks and Challenges of an Emerging Technology”.

  • 3D printing to repair damage in the human body

    Dr. Ivan Minev in front of his 3D printer © BIOTEC

    Freigeist Fellowship supports Dr. Ivan Minev in using 3D printing to find ways to repair damage in the human body.
    Dr. Ivan Minev, research group leader at the BIOTEC/CRTD, has been awarded a Freigeist Fellowship from the VolkswagenStiftung. This five-year, 920.000 EUR grant will enable him to establish his own research team. The ‘Freigeist’ initiative is directed toward enthusiastic scientists and scholars with an outstanding record that are given the opportunity to enjoy maximum freedom in their early scientific career.

  • 3D-Druck: Maßgeschneiderte Einlegesohlen für Diabetes-Patienten

    3D-Strukturen aus TPU für Einlegesohlen. Die Strukturen wurden über CAD ausgelegt, ihre Eigenschaften simuliert und mit Experimenten abgeglichen. Fraunhofer IWM

    Einlegesohlen für Diabetes-Patienten stellen Orthopädieschuhtechniker bislang in Handarbeit her. Künftig können die Spezialisten die Sohlen kostengünstiger als bisher mit einer neuartigen Software entwerfen und mithilfe von 3D-Druckern herstellen. Die Vorteile: Die mechanischen Eigenschaften der Einlegesohlen lassen sich besser analysieren und wissenschaftlich bewerten. Drückt der Schuh? Üblicherweise verlagert man in diesem Fall das Gewicht und entlastet die schmerzende Stelle. Bei Diabetes-Patienten jedoch verkümmern oftmals die Nervenenden im Fuß – die Betroffenen spüren die schmerzende Stelle nicht. Dies kann zu Druckstellen und schließlich zu Wunden führen, die schlecht verheilen. Abhilfe oder zumindest Linderung versprechen Einlegesohlen, die an der verletzten Stelle sehr weich sind und die Orthopädieschuhtechniker in Handarbeit aus verschiedenen Materialien passgenau anfertigen.

  • Aachen – The 3D Valley

    Additive manufacturing of metal or plastic components is the focus of the 3D Valley Conference on September 14 and 15, 2016 in Aachen. © Fraunhofer ILT, Aachen, Germany.

    Major players in the aerospace and automotive sectors are modifying 3D printing processes for use in large-scale production, while small and medium-sized companies also increasingly recognize the technology’s huge potential. However, the costs and know-how associated with 3D printing still represent major obstacles to its introduction. Now researchers and manufacturers have joined forces in Aachen to offer users customized solutions.

  • Aachen Center for 3D Printing: Official launch of the world’s largest SLM facility

    On June 1, 2017, the world’s largest selective laser melting (SLM) facility for metal components was inaugurated at the new Digital Photonic Production industry building on the RWTH Aachen Campus. Concept Laser GmbH

    For their joint project, the Aachen Center for 3D printing, the Aachen University of Applied Sciences and the Fraunhofer Institute for Laser Technology ILT have ambitious plans. On June 1, 2017, they officially opened the world’s largest SLM facility, located in the new Digital Photonic Production industry building on the RWTH Aachen campus. Concept Laser’s new XLine 2000R selective laser melting system plays a pivotal role in the SLM-XL research project, which is intended to accelerate and optimize the entire manufacturing process for large, metal components.

    Scientists are working closely with the Digital Photonic Production research campus, which is located in the same building and funded by the German Federal Ministry of Education and Research (BMBF).

  • Additive Ideas in Demand: The AMable Project Promotes Flexible AM Solutions to Fight the Coronavirus

    How can AM help in the fight against coronavirus? The EU project AMable calls for the submission of ideas in this area. In a 2nd step, SMEs, for example, can submit solution cons and receive funding. © Mike Fouque – stock.adobe.com.

    The coronavirus is currently paralyzing public and private life and in many places there is a lack of medical equipment and viable solutions to protect society against the spread of the virus. Together with institutions from all over Europe, the Fraunhofer Institute for Laser Technology ILT is supporting companies in the EU project AMable in implementing Additive Manufacturing ideas that will help overcome bottlenecks in this fight. Now that AMable has already successfully paved the way for SMEs to industrial 3D printing with metal and plastic, the partners are offering aid and public funding for COVID-19 projects.

  • Additive Machines Discover Superalloys

    By means of laser powder build-up welding, components made of different materials can be integrally manufactured. © Fraunhofer IWS Dresden

    Fraunhofer lighthouse project "futureAM" expected to speed up "additive manufacturing" by a factor ten. Scientists at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden have developed innovative methods enabling more materials to be processed in additive manufacturing than ever before. For example, additive manufacturing systems could facilitate better future aircraft engines with lower fuel consumption.

  • Additive manufacturing, from macro to nano

    Magnesium part produced with selective laser micro melting.  Photo: LZH

    Creating large structures with high volume or with the highest-possible resolution: The Laser Zentrum Hannover e.V. (LZH) is carrying out research on diverse processes for additive manufacturing, in order to push past the present limits. At the Hannover Messe 2017, at the pavilion of the State of Lower Saxony (hall 2, stand A08), the LZH is presenting the state of the art.

    Light for Innovation – since 1986, the Laser Zentrum Hannover e.V. (LZH) has been committed to advancing laser technology. Supported by the Lower Saxony Ministry for Economics, Labour and Transport, the LZH has been devoted to the selfless promotion of applied research in the field of laser technology.

  • Additive Manufacturing: Budget-friendly Retrofit of Module for Wire-based Laser Deposition Welding

    Processing head "LMD-W-20-L" for wire-based laser deposition welding. Graphic: Fraunhofer IPT

    When economic or safety considerations rule out the use of powder materials in additive manufacturing, the option of wire-feed laser deposition welding resents itself. The Fraunhofer Institute for Production Technology IPT in Aachen has developed a smart laser module for wire deposition welding, which can easily be integrated within existing process chains, handling systems or machine tools. The engineers from Aachen will be unveiling the LMD-W-20-L module for the first time to the visitors from industry at Formnext, the Fair for Additive Technologies in Frankfurt/Main, Hall 3, Booth E70, 13-16 November 2018.

  • Additively Manufactured Rocket Engine Features an Aerospike Nozzle for Microlaunchers

    Aerospike engine. © Institute of Aerospace Engineering,TU Dresden/Fraunhofer IWS Dresden

    Microlaunchers are an alternative to conventional launch vehicles. Able to carry payloads of up to 350 kilograms, these midsized transport systems are designed to launch small satellites into space. Researchers at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden and TU Dresden’s aerospace experts developed an additively manufactured rocket engine with an aerospike nozzle for microlaunchers. The scaled metal prototype is expected to consume 30 percent less fuel than conventional engines. It will feature prominently at the Hannover Messe Preview on February 12 and in the showcase at booth C18 in hall 16 at the Hannover Messe from April 20 through 24, 2020.
    The market for small satellites is sure to boom in the years ahead. The United Kingdom aims to build a spaceport in the north of Scotland, the first on European soil. The Federation of German Industries (BDI) has also endorsed the idea of a national space-port. It is to serve as the pad for small-to-midsized launchers that haul research instruments and small satellites into space. These microlaunchers are engineered to carry a payload of up to 350 kilograms. Aerospike engines are an efficient means of powering these microlaunchers. They offer the welcome prospects of far less mass and far lower fuel consumption. A research team from Fraunhofer IWS and TU Dresden's Institute of Aerospace Engineering developed, manufactured and tested an aerospike engine over the past two years.

  • AddSteel Project: New Steel Materials for 3D Printing

    In the NRW Leitmarkt project AddSteel, powders for metallic 3D printing using the LPBF process are produced from special, adapted alloys. © Fraunhofer ILT, Aachen, Germany.

    North Rhine-Westphalia has launched the NRW Leitmarkt project AddSteel, which is aimed at digitalizing the steel industry. Coordinated by SMS group GmbH, a plant engineering company based in Mönchengladbach, this project will develop new function-adapted steel materials for additive manufacturing. One of the project’s key areas of focus is the qualification of the developed materials for laser powder bed fusion (LPBF), a metallic 3D printing process, at the Fraunhofer Institute for Laser Technology ILT in Aachen. One of the AddSteel project team’s first successes was the development of the first case-hardening and heat-treatable steel powders designed specifically for LPBF applications.

  • Ahead of the Curve

    CurveUps are flat materials that transform themselves through material forces into the desired 3D object. IST Austria

    CurveUps: IST Austria computer scientists design flat sheets that transform themselves into smooth-surfaced, free-form objects. Their new method will be presented at this year’s prestigious “SIGGRAPH” conference.

    3D printers have been around since the 1980s, but we are still far from maximizing their potential. One active area of research and development is “self-actuating” objects: flat materials that transform themselves through material forces into the desired 3D object. Previously, however, the range of objects was limited to those with sharp edges and little, if any, curvature, and the transformation methods were based primarily on folding or processes that could not be controlled very precisely (e.g. chemical reactions or inflation).

  • ALGEN REVOLUTIONIEREN 3D-DRUCK VON ZELLEN

    Felix Krujatz erhält für seine Doktorarbeit auf dem Gebiet der Algenbiotechnologie den Nachwuchsförderpreis der Sächsischen Akademie der Wissenschaften. Kirsten Mann

    Wissenschaftler der TU Dresden gewinnt Nachwuchsförderpreis der Sächsischen Akademie der Wissenschaften / Algenbiotechnologie revolutioniert 3D-Bioprinting / weltweit erster 3D-gedruckter Bioreaktor mit OLEDS macht neue Untersuchungsmethoden möglich. Felix Krujatz, Wissenschaftlicher Mitarbeiter an der Fakultät Maschinenwesen der TU Dresden, erhält für seine Doktorarbeit „Entwicklung und Evaluierung neuer Bioreaktorkonzepte für phototrophe Mikroorganismen“ den Nachwuchsförderpreis der Sächsischen Akademie der Wissenschaften zu Leipzig. Seine Forschungsergebnisse enthalten mehrere Weltneuheiten auf dem Gebiet der Biotechnologie und können u.a. das Bioprinting menschlicher Zellen für regenerative Therapien revolutionieren sowie eine neue Generation von Bioreaktoren hervorbringen. Der Preis wird am 09. Dezember um 16:00 Uhr in Leipzig öffentlich verliehen.

  • Appointment of Prof. Schleifenbaum to the chair “Digital Additive Production“ at RWTH Aachen Uni

    Picture: “In the area of Additive Manufacturing, the applications and the transfer of know-how into the industry are particularly important!” © Schleifenbaum.

    Univ.-Prof. Dr.-Ing. Dipl. Wirt.-Ing. Johannes Henrich Schleifenbaum has followed the call to the newly established chair – “Digital Additive Production DAP” – of the Faculty of Mechanical Engineering at RWTH Aachen University. He assumed the position on August 1, 2016. He also took over management of the competence area “Additive Manufacturing and Functional Layers” at the Fraunhofer Institute for Laser Technology ILT in Aachen on November 1, 2016. Pooled expertise in additive manufacturing technologies in Aachen. Along with RWTH Aachen University, FH Aachen University of Applied Sciences and industrial partners, the Fraunhofer Institutes ILT and IPT form a strong network promoting additive manufacturing (AM) technologies at an international level. In addition to the Photonics Cluster, inaugurated in April 2016 at the RWTH Aachen Campus, the newly established DAP chair rounds off the great spectrum of AM offered by Aachen’s R&D landscape.

  • Breakthrough with 3D printed Gas Turbine Blades

    Extreme conditions for the 3D-printed blades: The blades had to endure 13,000 revolutions per minute and temperatures beyond 1,250 degrees Celsius.

    Siemens has achieved a breakthrough in the 3D printing of gas turbine blades. For the first time, a team of experts has full-load tested gas turbine blades that were entirely produced using additive manufacturing. The tests were conducted at the Siemens test center for industrial gas turbines in Lincoln, Great Britain. Over the course of several months, Siemens engineers from Lincoln, Berlin, and the Swedish municipality of Finspong worked with experts from Materials Solutions to optimize the gas turbine blades and their production. Within just 18 months, the international project team succeeded in developing the entire process chain, from the design of individual components, to the development of materials, all the way to new methods of quality control and the simulation of component service life. In addition, Siemens tested a new additively manufactured blade design with a fully revised and improved internal cooling geometry.

  • Combining Additive and Conventional Manufacturing

    Lightweight, organically-shaped products can be designed using topology optimization. Siemens’ NX software allows designers and engineers to create and optimize a new generation of product designs.

    New software from Siemens is is making it possible to combine additive and conventional manufacturing techniques for the first time, thus enabling the production of individualized products for mass markets. Siemens has integrated additive manufacturing into its NX software suite for product development. Unlike conventional manufacturing techniques, 3D printing imposes few limitations on product design, thus opening the door to production of individualized products for mass markets. However, there are still obstacles to integrating conventional and additive manufacturing techniques. 3D printing uses completely different design techniques than conventional manufacturing and generates totally different data formats.

  • Complex hardmetal tools out of the 3D printer

    Wire die with integrated cooling duct in the raw state after sintering: at Fraunhofer IKTS in Dresden, hardmetal components are developed according to customer requirements via 3D binder jetting.

    For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

  • Ears from the 3D-printer

    A 3D-printed ear: Empa researcher Michael Hausmann uses nanocellulose as the basis for novel implants. Empa

    Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing. It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains: «In viscous state cellulose nanocrystals can easily be shaped together with nother biopolymers into complex 3-dimensional structures using a 3D printer, such as the Bioplotter.” Once cross-linked, the structures remain stable despite their soft mechanical properties.