The structure of rhenium nitride pernitride containing single nitrogen atoms (red) and N-N nitrogen dumbbells (blue). Larger balls show rhenium atoms. Illustration: Maxim Bykov. Illustration: Maxim Bykov.

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

A diamond on a parabolic light collecting lens is the main component of the new angular rate sensor. photo/©: Arne Wickenbrock


Quantum technology is about to make the leap from scientific research to concrete applications. Contributing to this is the new MiLiQuant research project in which businesses and universities are cooperating to develop new applications for quantum technology. The German Federal Ministry of Education and Research (BMBF) will be supporting the project to the tune of approximately EUR 9.4 million over the next three years to early 2022.

e-scooter step made of a composite material integrating granite and carbon fibers made from algae. Image: Andreas Battenberg / TUM

In combination with granite or other types of hard rock, carbon fibres make possible all-new construction and building materials. Theoretical calculations show: If the carbon fibres are produced from algae oil, production of the innovative materials extracts more carbon dioxide from the atmosphere than the process sets free. A research project spearheaded by the Technical University of Munich (TUM) is to further advance these technologies.

Prof. Oliver Lieleg uses models to visualize how nanoparticles are bound together by DNA fragments. Such connections may become the basis of drugs that release their active ingredients in sequence. Uli Benz / TUM

A drug with three active ingredients that are released in sequence at specific times: Thanks to the work of a team at the Technical University of Munich (TUM), what was once a pharmacologist's dream is now much closer to reality. With a combination of hydrogels and artificial DNA, nanoparticles can be released in sequence under conditions similar to those in the human body.