Space Tango CubeLab on board the International Space Station ISS. Space Tango

The University of Zurich has sent adult human stem cells to the International Space Station (ISS). Researchers from UZH Space Hub will explore the production of human tissue in weightlessness. On 6 March at 11:50 PM EST, the International Space Station resupply mission Space X CRS-20 took off from Cape Canaveral (USA). On board: 250 test tubes from the University of Zurich containing adult human stem cells. These stem cells will develop into bone, cartilage and other organs during the month-long stay in space.

 

At rough areas of a catalyst surface, water is split into hydrogen and oxygen in a more energy efficient way than at smooth areas. MPI-P, License CC-BY-SA

Whether as a fuel or in energy storage: hydrogen is being traded as the energy carrier of the future. To date, existing methodologies have not been able to elucidate how exactly the electrochemical process of water splitting into hydrogen and oxygen takes place at the molecular scale on a catalyst surface. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now developed a new method to investigate such processes "live" on the nanometer scale. The new detailed insights into the splitting of water on gold surfaces could aid the design of energy-efficient electro-catalysts.

A team of physicists led by Oriol Romero-Isart at the University of Innsbruck and the Austrian Academy of Sciences is proposing to cool microparticles with sound waves. Carlos Sánchez Muñoz

Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties. Now, a team of physicists led by Oriol Romero-Isart at the University of Innsbruck and the Austrian Academy of Sciences is proposing to cool microparticles with sound waves instead. While quantum physics is usually concerned with the basic building blocks of light and matter, for some time scientists have now been trying to investigate the quantum properties of larger objects, thereby probing the boundary between the quantum world and everyday life.

Schematic representation of the magnetization in an advanced racetrack memory data storage. Skyrmions (blue) and antiskyrmions (red) constitute the '1' and '0' bits, respectively. Börge Göbel/MLU

Magnetic (anti)skyrmions are microscopically small whirls that are found in special classes of magnetic materials. These nano-objects could be used to host digital data by their presence or absence in a sequence along a magnetic stripe. A team of scientists from the Max Planck institutes (MPI) of Microstructure Physics in Halle and for Chemical Physics of Solids in Dresden and the Martin Luther University Halle-Wittenberg (MLU) has now made the observation that skyrmions and antiskyrmions can coexist bringing about the possibility to expand their capabilities in storage devices. The results were published in the scientific journal "Nature Communications".