Prototype of a mount with tunable stiffness. Photo: Fraunhofer LBF/Raapke

Numerical simulations have massively accelerated product development over the past few decades. A variety of scenarios can be tested in a short time and the number of necessary prototypes has been steadily reduced. Nevertheless, physical tests will not lose significance. Numerical models must be validated and approval testing must be carried out. In the project “Digitization in Testing Technology”, scientists from the Fraunhofer Institute for Structural Durability and System Reliability LBF have developed tunable test rig components and a mechanical hardware-in-the-loop approach. The Results will present at the Automotive Testing Expo in Stuttgart, May 21-23, 2019 in hall 8, booth 8052.

Electron microscopic image of the hybrid material. Image: Pawan Kumar / University of Alberta

Chemists at the Technical University of Munich (TUM) have developed an efficient water splitting catalyst as part of a collaborative international research effort. The catalyst comprises a double-helix semiconductor structure encased in carbon nitride. It is perfect for producing hydrogen economically and sustainably. An international team led by TUM chemist Tom Nilges and engineer Karthik Shankar from the University of Alberta have now found a stable yet flexible semiconductor structure that splits water much more efficiently than was previously possible. 

Using ultrashort pulses of light enables extremely economical switching of spins within a few picoseconds from one stable orientation (red arrow) to another (white arrow). Illustration: Brad Baxley (parttowhole.com) – For exclusive use in reporting this press release.

 

Using extremely short bursts of light, precisely shaped in a custom-cut gold antenna, an international research team from Germany, The Netherlands, Russia, and the US has switched the magnetization state of a solid faster and more efficiently than ever before. Their key achievement could pave the way towards a novel kind of nearly dissipation-free information technology. The results are published in the current issue of the top-tier journal Nature.

With multi-beam optics, the high laser powers can be used efficiently. © Fraunhofer ILT, Aachen, Germany.

Experts from 13 different Fraunhofer institutes are working on the development of multi-kW ultrafast lasers and various applications in the Fraunhofer Cluster of Excellence Advanced Photon Sources CAPS. A user facility with application laboratories in Aachen and Jena is being created for this purpose, laboratories in which partners from industry and research can work with the new technology.