“COAXshield” – novel local shielding nozzle system for laser metal deposition applications with sensitive materials. © Fraunhofer IWS Dresden

"COAXshield" and "LIsec": Fraunhofer IWS presents shielding gas nozzle and light scanner for laser powder build-up welding at "formnext" trade fair. Additive manufacturing systems can generate highly complex components, which could not be produced with conventional machine tools or only with great effort. Nevertheless, such industrial 3D printers are far from being standard equipment in factories. This is not just due to the purchase costs, but also to many other challenges.

Topological quantum states in graphene induced by light. Benedikt Schulte, MPSD

Discovering ways to control the topological aspects of quantum materials is an important research frontier because it can lead to desirable electrical and spin transport properties for future device technologies. Now MPSD scientists have discovered a pioneering laser-driven approach to generate a topological state in graphene. Their work has just been published in Nature Physics.
In topological materials, electrons experience a twisted world. Instead of simply moving straight ahead when feeling a force, they may be pushed sideways. In such a material current actually flows orthogonally to an applied voltage.

For the first time, scientists at Fraunhofer IWS printed 3D high-entropy demonstrator structures made of the Cantor alloy "CrMnFeCoNi" using the Fused Filament Fabrication (FFF) process. © Fraunhofer IWS Dresden

Symposium in Dresden focuses on a new class of materials.
A new class of materials promises many innovations in aviation, turbine construction and other branches of industry: High entropy alloys (HEA) are metals in which five or more elements are atomically bonded in similar proportions. Properly designed, they are harder, more heat-resistant and lighter than steel, aluminum and other classic materials. For about 15 years, engineers around the world have been trying to make these innovative materials ready for series production. But high-entropy alloys are still too expensive and difficult to process.

The energy behavior of the giant atom shows a memory. Lingzhen Guo/Max Planck Institute for the Science of Light

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer. The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties. The experiments were done at Chalmers University of technology (Sweden) and the theory was done by Dr. Lingzhen Guo at Max Planck Institute for the Science of Light (MPL) in Erlangen. The measured effect has never been observed on a single quantum system.