Composition of the solid sodium battery. Empa

Researchers from Empa and the University of Geneva have developed a prototype of a novel solid sodium battery with the potential to store extra energy. Phones, laptops, electric cars – batteries are everywhere. And to meet the expectations of today’s consumers, these batteries are increasin­gly lighter, more powerful and designed to last longer. Currently the core technology for these applications is lithium ion batteries. But the technology is expensive and contains a flammable liquid, which may represent a safety hazard, when the battery is abused.

Picture of a hybrid particle taken by a transmission electron microscope. Pictured are the inorganic (dark) and organic (light) lamellas that the particle is made of, as well as the tubular shapes (the low-contrast area in the middle). Through vaporisation with Europium, the hybrid stage can be transformed into pure EuO. Copyright: University of Konstanz

Konstanz scientist synthesises an important ferromagnetic semiconductor. The Collaborative Research Centre CRC 1214 at the University of Konstanz has developed a method for synthesising Europium (II) oxide nanoparticles - a ferromagnetic semiconductor that is relevant for data storage and data transport. Ferromagnetic semiconductors have attracted increasing attention over the last decade. Their properties make them promising functional materials that can be used in the field of spin-based electronics (spintronics). Spintronics is of crucial importance for the storage and transport of information.

In this new process, the tiny, thread-like carbon nanotubes (CNTs) arrange themselves - almost like felting - to form a stable, tear-resistant layer. Fabian Schütt

Due to their unique properties, carbon nanotubes would be ideal for numerous applications, from ultra-lightweight batteries to high-performance plastics, right through to medical implants. But they either cannot be combined adequately with other materials, or they then lose their beneficial properties. Scientists from Kiel University and the University of Trento have now developed an alternative combining method, so that they retain their characteristic properties. As such, they "felt" the thread-like tubes into a stable 3D network that is able to withstand extreme forces. The research results have been published in the journal Nature Communications.

Trim-Away directly and rapidly destroys a fluorescent protein in an egg cell. From left: cell before introduction of antibodies directed against the protein and 10, 30, and 60 minutes thereafter. Dean Clift / MRC Laboratory of Molecular Biology

In our body, proteins carry out almost all essential processes, and protein malfunction causes many diseases. To study the function of a protein, researchers remove it from the cell and subsequently analyze the consequences. The two methods typically used are genome editing by CRISPR/Cas, and RNA interference, acting on the level of DNA or RNA, respectively. However, their influence on protein amounts is indirect and takes time. Scientists now present a new method, called Trim-Away, allowing to directly and quickly deplete any protein from any cell type. As Trim-Away can distinguish between different variants of a protein, it also opens up new venues for the therapy of diseases.

feed-image Feed Entries