An etching process gives the originally blank discs a porous surface - and a colourful sheen. The porous silicon layer can be bonded particularly well with a copper electrode. Photo: Siekmann, Kiel University

Kiel University and equipment manufacturers RENA Technologies present new approach at the Hannover Messe. Longer life times, larger ranges and faster recharging - developments such as electric mobility or the miniaturisation of electronics require new storage materials for batteries. With its enormous storage capacity, silicon would potentially have decisive advantages over the materials used in commercial available lithium-ion batteries. But due to its mechanical instability, it has so far been almost impossible to use silicon for storage technology.

An artistic view of frequency conversion from near-infrared to mid-infrared through a nonlinear crystal. Shortwave radiation enters a crystal and drives electron motion. The electrons cannot fully follow the frequency of the light field and partially oscillate at lower frequencies. In this way mid-infrared radiation is generated. Copyright: Alexander Gelin

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

The scattering from the structure as recorded on the camera, in which the magnetic contribution is invisible to the naked eye. Photo: University of Göttingen

A research team at the Universities of Göttingen and Augsburg in Germany in collaboration with Technion in Israel have used femtosecond HHG pulses for the first time to capture images of magnetic domains. The work establishes a highly-sought after technology: magneto-optical nano-imaging in a table-top scheme.

The aluminium flange is firmly attached to the aluminium wall. Photo: Siekmann, CAU

Kiel prototype for new connection technology will be presented at the Hannover Messe. Welding is still the standard technique for joining metals. However, this laborious process carried out at high temperatures is not suitable for all applications. Now, a research team from the "Functional Nanomaterials" working group at Kiel University, together with the company Phi-Stone AG from Kiel, has developed a versatile alternative to conventional welding and gluing processes.