Turbine blade with a thin ceramic coating of yttrium-stabilized zirconium oxide (YSZ): such a thermal barrier coating allows a higher operating temperature in the turbine. © Fraunhofer IWS Dresden

Environmentally friendly: IWS Dresden ceramic coatings can reduce engine exhaust gases

To make aircrafts more economical, environmentally friendly and robust, Fraunhofer engineers from Dresden have developed a new ceramic heat shield technology. In this process, a powder of yttrium-stabilized zirconium oxide (YSZ) is added to water to form a suspension. Quickly and cost-effectively this liquid powder mixture can be sprayed onto turbine blades or other aircraft parts. Such and similar thermal barrier coatings (TBCs) facilitate aircraft engines, which consume less fuel and do not contaminate the atmosphere as much.

Scaled model of a gas turbine for power generation; completely manufactured with additive manufacturing technologies. Fraunhofer IFAM Dresden

Together with the H+E-Produktentwicklung GmbH in Moritzburg, Saxony, the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has developed a true-to-scale gas turbine that impressively demonstrates the current potentials and limitations of powder bed-based additive technologies. The technology demonstrator "Siemens SGT6-8000 H", a scaled model of a gas turbine for power generation on a scale of 1:25, was completely manufactured with additive processes except for the shaft.

OLED luminous strips enable luminous surfaces with segmented control - stripe with segmented control. © Fraunhofer FEP

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Time-lapse images show that the enzyme ‘breathes’ during turnover: it expands and contracts aligned with the catalytic sub-steps. Its two halves communicate via a string of water molecules. Jörg Harms / MPSD

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.