Prof. Dirk Haller discovered that it is not cell stress alone that leads to tumour growth, but the cooperation of stress and microbiota - here with Sandra Bierwirth (left) and Olivia Coleman. A. Heddergott/ TUM

The team of Professor Dirk Haller at the Technical University of Munich (TUM) made an unexpected discovery while investigating the triggering factors of colon cancer: Cell stress in combination with an altered microbiota in the colon drives tumour growth. Previously, it was assumed that this combination only contributes to inflammatory intestinal diseases.

Novel sensors make it possible to measure the activation or deactivation of GPCRs with high-throughput methods. Graphic: Hannes Schihada

Researchers of the University of Würzburg have developed a method that makes it possible to measure the activation of receptors in a very short time. This might speed up the development of new drugs. Hormones and other neurotransmitters, but also drugs, act upon receptors. “Their active substances bind to the receptors and modify the three-dimensional receptor arrangement regulating the downstream signal pathways,” says Hannes Schihada from the Institute for Pharmacology and Toxicology at the University of Würzburg (JMU). 

Boosting the energy output by storing and bundling the energy of many spontaneous enzyme reactions. Alejandro Posada

In chemistry, a reaction is spontaneous when it does not need the addition of an external energy input. How much energy is released in a reaction is dictated by the laws of thermodynamics. In the case of the spontaneous reactions that occur in the human body this is often not enough to power medical implants. Now, scientists at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international team of researchers, found a way to boost the energy output by storing and bundling the energy of many spontaneous enzyme reactions. The work is published in the journal Nature Communications.

The enzyme ARTC1 (red) modifies hemopexin (blue) at defined sites by adding ADP ribose (yellow) and thus impairs the binding strength of heme (white). Kapila Gunasekera, UZH

Researchers from the University of Zurich can, for the first time, precisely characterize the protein modification ADP-ribosylation for all proteins in a tissue sample. The changes, which are a typical reaction to stress, provide information about the condition of a cell. Together with the University Hospital Zurich, they are now testing the new method to diagnose and treat cancer.