Nanorobots injected into the eye on their way towards the retina. Max Planck Institute for Intelligent Systems

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Cardiac pacemakers are usually housed in a titanium housing that is welded together from two parts. Empa has optimized the frequency of the working laser so that no black edges appear during welding, which would reduce the value of the medical product. Image: istockphoto

Using laser technology Empa scientists optimized a technique to weld the electronics of implantable pacemakers and defibrillators into a titanium case. The medtech company Medtronic is now using the method worldwide to produce these devices. In Tolochenaz (Canton of Vaud) the US medtech company Medtronic produces one out of five heart pacemakers available on the global market and one out of four defibrillators. The electronics of these implantable devic-es are housed in titanium cases, which thus far were welded hermetically with a solid state flash laser. However, the lasers are high-maintenance and often the source of irregularities. Moreover, they require water cooling and take up a lot of space.

The illustrations show in comparison how the blood circulation in the human body (left) and the channels on the multi-organ chip (right) supply the liver, the kidneys and other organs or tissues. © Fraunhofer IWS Dresden

Dresden Fraunhofer engineers have developed a so-called "multi-organ chip". This microsystem from the Fraunhofer Institute for Material and Beam Technology IWS Dresden, which has now received an "EARTO Innovation Award" in Brussels, simulates the blood circulation and the organs of animals or humans. The "lab-on-a-chip" will help industry to develop new drugs and cosmetics more quickly than before. But what is even more important: "We see good opportunities to eliminate the need for many animal experiments," emphasized Dr. Udo Klotzbach, Business Unit Manager Microtechnology at Fraunhofer IWS. In addition, this system opens the door to individualized medicine a little further, in which doctors can determine an exactly fitting therapy for each patient within days instead of years.

The international research team is working on a treatment on dementia like Alzheimer, which leads to a death of neuronal cells. © shutterstock.com/Naeblys

About 29 million people around the world are affected by the disease "Alzheimer". In an international collaboration, scientists of the Max Planck Institute for Polymer Research (MPI-P) in Mainz together with teams from Italy, Great Britain, Belgium and the USA are now working together on an approach for a therapy. On the one hand, the goal is to understand the processes occurring in the brain that lead to the disease; on the other hand the development of a method for targeted drug delivery.