Combining a tiny drug capsule with antibodies under acidic conditions results in the antibodies attaching to the drug carrier in a stable way. This makes targeting for nanocarriers possible. Stefan Schuhmacher

Scientists at the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) have developed a new method to enable miniature drug-filled nanocarriers to dock on to immune cells, which in turn attack tumors. In the future, this may lead to targeted treatment that can largely eliminate damage to healthy tissue.

Graphic: Wilfried Weber

 

Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. These biohybrid systems were engineered to perform certain functions, such as the counting signal pulses in order to release bioactive molecules or drugs at the correct time, or to detect enzymes and small molecules such as antibiotics in milk. The interdisciplinary team presented their results in some of the leading journals in the field, including Advanced Materials and Materials Today.

The graphical image used for the cover of the JCTC (see picture below). Image: Daria Kokh/HITS

HITS researchers developed tauRAMD, a tool to predict drug-target residence times from short simulations. The method is illustrated on the cover page of July 2018 issue of the Journal of Chemical Theory and Computation, software is freely available. The design of a drug with a desired duration of action, whether long or short, is usually a complicated and expensive trial-and-error process guided only by a mix of expert intuition and serendipity.

The authors were able to show exactly how a specific RNA binding protein (blue) recognizes pri-miR-18a (pink) and changes its structure in such a way that it develops into mature miRNA-18a. Picture modified from Kooshapur et al.

An international research team led by Helmholtz Zentrum München, Technical University of Munich and the University of Edinburgh has used an integrated structural biological approach to elucidate the maturation of a cancer-causing microRNA in gene regulation. In the future, the authors hope to develop new therapies based on the findings presented in ‘Nature Communications’.