The schematic construction of the SAW sensor with a magnetostrictive thin film (b) on a piezoelectric substrate (d). SFB 1261

In the future, highly-sensitive sensors could be able to detect magnetic signals from the body in order to draw conclusions on heart or brain functions. In contrast with established electrical measurement techniques, they would achieve contactless measurement, i.e. without direct skin contact. At present, such measurements are still associated with considerable expense and effort. Now, researchers at Kiel University built an important basis for biomagnetic diagnostics.

After infection with CD9-containing viruses, human HEK293 cells produce a red fluorescent reporter protein that indicates the successful transmission of viral genetic information into the cells. Photo: Kai Böker

Scientists at the German Primate Center improve DNA transfer in gene therapy. Parkinson's disease, Huntington's disease, cystic fibrosis – these and many other fatal hereditary human diseases are genetically transmitted. Many cancers and cardiovascular diseases are also caused by genetic defects. Gene therapy is a promising possibility for the treatment of these diseases. With the help of genetically modified viruses, DNA is introduced into cells in order to repair or replace defective genes. By using this method, scientists from the German Primate Center (DPZ) – Leibniz Institute for Primate Research have discovered a quicker and more efficient treatment for the cells.

Still from time-lapse video of myelin growing around axons. (c) Technical University of Munich

Nerve fibers are surrounded by a myelin sheath. Scientists at the Technical University of Munich (TUM) have now made the first-ever “live” observations of how this protective layer is formed. The team discovered that the characteristic patterns of the myelin layer are determined at an early stage. However, these patterns can be adjusted as needed in a process apparently controlled by the nerve cells themselves.

The DGP awards the Technology Transfer Prize 2017/2018 jointly to  Nanoscribe GmbH, as well as the Institute for Nanotechnology and Innovation and Relation Management of the Karlsruhe Institute of Technology (KIT). © DPG 2016

The DPG Technology Transfer Prize 2017/2018 will be awarded jointly to Nanoscribe GmbH, Eggenstein-Leopoldshafen, and the Institute for Nanotechnology and Innovation and Relation Management at the Karlsruhe Institute of Technology (KIT). The three institutions received the award for the outstanding transfer of scientific findings in the field of 3D laser lithography into commercial exploitation - in particular for the fabrication of micro- and nanostructures.