Based on the proven MCR microarray analysis platform of the Munich-based GWK Präzisionstechnik GmbH scientists at the Technical University of Munich have developed a new microarray-based rapid test for SARS-CoV-2 antibodies. Sebsatian Kissel / TUM

During the continued progression of the Corona pandemic, rapid, inexpensive, and reliable tests will become increasingly important to determine whether people have the associated antibodies – either through infection or vaccination. Researchers at the Technical University of Munich (TUM) have now developed such a rapid antibody test. It provides the result in only eight minutes; the aim is to further reduce the process time to four minutes.
There are currently more than 20 different test procedures available for determining whether a person has antibodies against the new Corona virus. The waiting times for the results range between ten minutes and two and a half hours.


The phantom used for hyperpolarized imaging, with an illustration of imaging slices acquired using the new technique. photo/©: Laurynas Dagys, University of Southampton

New technique using nuclear spin hyperpolarization of hydrogen paves the way for further advances in the field of MRI. Magnetic resonance imaging (MRI) is already widely used in medicine for diagnostic purposes. Hyperpolarized MRI is a more recent development and its research and application potential has yet to be fully explored. Researchers at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM) have now unveiled a new technique for observing metabolic processes in the body. Their singlet-contrast MRI method employs easily-produced parahydrogen to track biochemical processes in real time. The results of their work have been published in Angewandte Chemie International Edition and chosen by the editors as a "hot paper", i.e., an important publication in a rapidly-developing and highly significant field.

Magnetosomes isolated from magnetic bacteria.

Magnetic nanoparticles biosynthesized by bacteria might soon play an important role in biomedicine and biotechnology. Researchers of the University of Bayreuth have now developed and optimised a process for the isolation and purification of these particles from bacterial cells. In initial tests, magnetosomes showed good biocompatibility when incubated with human cell lines. The results presented in the journal "Acta Biomaterialia" are therefore a promising step towards the biomedical use of magnetosomes in diagnostic imaging techniques or as carrier in magnetic drug delivery applications.

Figure 1: The ear is a portal of entry for nanoparticles via the external auditory canal. The connection of ear to inner ear offers an entrance to the most central parts for the particles. Nanoparticles go through the tympanic membrane to enter via the tympanic cavity all other parts of the inner ear and can even delocalize via the vestibular nerve, the cochlear nerve and the blood to the entire body, especially the brain. The particles can be from lead oxide, lead acetate and lead acetate coated solarium dioxide nanoparticles.

The Beethoven’s deafness and its development are a riddle. In a previous article the authors (Luthe and Bischoff, 2020) suggested poisoning by ultrafine particles through lead corrosion of e.g. organ pipes. In the present article, they propose that Beethoven’s health problems, especially his deafness, were caused by a combination of exposure to lead-containing micro- and nanoparticles. In addition, high alcohol consumption weakened the defense against radical oxidative stress. The authors further hypothesize that the ear is a major portal of entry for nanoparticles, in this case causing lead poisoning of the inner ear.