A lung tumor that expresses USP28 (left). On the right, however, tumors are shown in which USP28 has been "cut out" using the gene editing tool CRISPR/Cas9 – they are significantly smaller.  (Images: Markus Diefenbacher)

In squamous cell carcinoma, a protein ensures that unneeded proteins are no longer disposed of. A research team at the University of Würzburg has switched off this protein for the first time. Squamous cell carcinoma is a very unusual type of cancer. They occur in many tissues – for example in the lungs, esophagus, pancreas, throat and pharynx, and on the skin. 

Frankfurt researchers followed the movements of this tiny molecule – just two-thousandths of the thickness of a piece of paper. The RNA aptamer changes its structure when it binds hypoxanthine. Goethe University

FRANKFURT. Even more detailed insights into the cell will be possible in future with the help of a new development in which Goethe University was involved: Together with scientists from Israel, the research group led by Professor Harald Schwalbe has succeeded in accelerating a hundred thousand-fold the nuclear magnetic resonance (NMR) method for investigating RNA. In the same way that a single piece of a puzzle fits into the whole, the molecule hypoxanthine binds to a ribonucleic acid (RNA) chain, which then changes its three-dimensional shape within a second and in so doing triggers new processes in the cell. Thanks to an improved method, researchers are now able to follow almost inconceivably tiny structural changes in cells as they progress – both in terms of time as well as space. The research group led by Professor Harald Schwalbe from the Center for Biomolecular Magnetic Resonance (BMRZ) at Goethe University has succeeded, together with researchers from Israel, in accelerating a hundred thousand-fold the nuclear magnetic resonance (NMR) method for investigating RNA.

Fluorescence microscopy of induced pluripotent stem cells of a healthy blood donor differentiated into early ectoderm. Source: Paul-Ehrlich-Institut

Jointly with researchers from Germany and France, researchers of the Paul-Ehrlich-Institut have generated induced pluripotent stem cells from one health individual, one patient with Aicardi-Goutières syndrome, and one patient with Renpenning syndrome. Proteins play a role in both diseases, which are also important for the immunological recognition of the human immune deficiency virus (HIV). With iPSCs and derived cell types, new insights can be gained into the syndromes and the human immune system in the fight against HIV. The results are reported in Stem Cell Research in three different contributions published from December 2019 to January 2020.

Illustration of the nuclear magnetic resonance (NMR) needle in the brain tissue. © whitehoune - stock.adobe.com, Max Planck Institute for Biological Cybernetics, University of Stuttgart. Montage: Martin Vötsch (design-galaxie.de)


A team of neuroscientists and electrical engineers from Germany and Switzerland developed a highly sensitive implant that enables to probe brain physiology with unparalleled spatial and temporal resolution. Now published in Nature Methods, they introduce an ultra-fine needle with an integrated chip that is capable of detecting and transmitting nuclear magnetic resonance (NMR) data from nanoliter volumes of brain oxygen metabolism. The breakthrough design will allow entirely new applications in the life sciences.