Confocal image of the embryonic mouse cortex. Green: stem cells; red: intermediate progenitor stage; white: final neurons; blue: nuclei of all cells. IST Austria/Hippenmeyer Group

During brain development, stem cells generate neurons of different type and function at distinct points in time. IST Austria researchers contribute key experiment to identify essential protein controlling stem cell behavior. To build the neocortex, a brain area involved in higher cognitive functions, stem cells produce billions of neurons of various types. In a Science study, neuroscientists from Switzerland, Belgium, and the Institute of Science and Technology Austria (IST Austria) have now shown that, over time, the neocortical stem cells go through various maturation states, each of them leading to a distinct neuron type. Production of the correct neuron type is bound to a specific protein complex.

Photoradiolabelling Using UV light, radiolabelled antibodies can be produced in just 15 minutes. Jason P. Holland, UZH

Radioactive antibodies that target cancer cells are used for medical diagnostics with PET imaging or for targeted radioimmunotherapy. Researchers from the University of Zurich have created a new method for radiolabelling antibodies using UV light. In less than 15 minutes, the proteins are ready-to-use for cancer imaging or therapy. Radioactive antibodies are used in nuclear medicine as imaging agents for positron emission tomography (PET) – an imaging technique that improves cancer diagnosis and monitoring of chemotherapy. Radioactive drugs can also be designed to kill tumors by delivering a radioactive payload specifically to the cancer cells. This treatment is called targeted radioimmunotherapy.

 

Scientists of the MPI-P created a method to address different anchor points on a DNA molecule to selectively grow polymers. © MPI-P / Lizenz CC-BY-SA

Personal drug delivery or nano-robotic systems could be a key concept for future medical applications. In this context, scientists around David Ng (Department of Prof. Tanja Weil) of the Max Planck Institute for Polymer Research (MPI-P) have recently developed a technology to customize the shapes of polymers and polymeric nanoparticles using DNA. In both 2D and 3D, precise patterns of structures composed of biocompatible polymer materials can be easily designed and constructed on a template.

The endoscopy objective mounted on the coupling objective. (Image: FAU/Sebastian Schürmann)

Biotechnologists, physicists, and medical researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed technology for microscopic imaging in living organisms. A miniaturised multi-photon microscope, which could be used in an endoscope in future, excites the body’s own molecules to illuminate and enables cells and tissue structures to be imaged without the use of synthetic contrast agents. The findings have now been published in the renowned journal ‘Advanced Science’.