Depending on the orientation of an applied magnetic field, quantum tunneling of the magnetisation allows to either freeze or to flip magnetic moments. © University of Augsburg/IfP/EKM

One bit per atom: Augsburg-based physicists and US colleagues are reaching the ultimate limit for nanoscale data storage

The compact w-band radar is about the size of a cigarette box. © Fraunhofer IAF


See what is hidden from the human eye. Preserve the view when optical sensors fail. Radars make the invisible visible. Based on millimeter waves penetrating plastics, cardboard, wood and textiles, they are able to see what's inside packaging, behind walls or behind smoke and fog. Researchers at Fraunhofer IAF have taken advantage of the unique characteristics of millimeter-waves and have developed a compact W-band radar module that is ideally suited for use in industrial sensors: It screens packaged goods and gives precise information about their contents.

CONAN transforms the 3D structure of the protein ubiquitin into a 2D contact map. Left: Structure of ubiquitin, colored by residue index. Right: Inter-residue distance map computed by CONAN. Image: Csaba Daday, HITS

CONAN to the rescue! The new software-package for molecular dynamic simulations compresses 3D data to contact maps and helps to analyze protein structures. The tool developed at HITS CONAN (CONtact ANalysis) has now been presented in the latest issue of „Biophysical Journal“. Proteins constantly move and change their conformation. Molecular dynamics typically answers the question of what the possible conformations of proteins are. Proteins, however, have a highly complicated and crowded structure, and understanding the changes in their behavior is a challenging task due to the high number of coordinates to monitor.

Depending on the magnetic configuration of the spin valve, the electrical signal is transmitted (bottom) or suppressed (top). ill./©: Joel Cramer

Magnon spintronics employs magnons instead of electrical charges for information processing. In the emerging field of magnon spintronics, researchers investigate the possibility to transport and process information by means of so-called magnon spin currents. In contrast to electrical currents, on which todays information technology is based, magnon spin currents do not conduct electrical charges but magnetic momenta.