The microscopic ribbons lie criss-crossed on the gold substrate. Empa

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications." Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the nanoelectronics of the future:

Roll-to-roll processed OLED on SEFAR TCS Planar substrates. © Fraunhofer FEP, Photographer: Jürgen Lösel

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments developed a roll-to-roll processed large area flexible OLED during a joint project.

Large area OLED lighting is an attractive technology for various applications in residential, architectural and automotive lighting segments. Sefar developed high conductive, transparent and flexible electrode substrates enabling large area homogenous lighting which is demonstrated by Fraunhofer FEP in a roll-to-roll (R2R) process.

High temperature sensor for extrusion systems: SOI chips (left) and casing (right). Fraunhofer IZM

Many industrial processes depend on exact pressure gauges. The SOI high-pressure sensors (silicon-on-insulator) developed by the Fraunhofer Institute for Reliability and Microintegration IZM makes this exact monitoring possible for processes operating at temperatures of up to 400° centigrade. The sensor promise an exceptionally long life as well as precision and efficiency. To keep up with technological requirements, future iterations of the sensors will be designed to withstand temperatures above 600° centigrade.

Fraunhofer IOF‘s quantum source. Designed to be fully operational even after extreme stress. Fraunhofer IOF

Due to the rapidly growing processing power of computers, conventional encryption of data is becoming increasingly insecure. One solution is coding with entangled photons. Fraunhofer researchers are developing a quantum coding source that allows the transport of entangled photons from satellites, thereby making an important step in the direction of tap-proof communication. In addition to the quantum source, researchers from various Fraunhofer institutes will be presenting other exciting optoelectronic exhibits at the LASER World of Photonics trade fair in Munich from June 26 - 29, 2017 (Hall A2, Booth 431 and Hall B3, Booth 327).