As the loading with curcumin (yellow) increases, the dissolution rate of the containers made of polymeric micelles (blue) decreases. (Picture: Ann-Christin Pöppler)

Nanocontainer for drugs can have their pitfalls: If they are too heavily loaded, they will only dissolve poorly. Why this happens is now reported by a Würzburg research group in "Angewandte Chemie". Nanocapsules and other containers can transport drugs through a patient's body directly to the origin of the disease and release them there in a controlled manner. Such sophisticated systems are occasionally used in cancer therapy. Because they work very specifically, they have fewer side effects than drugs that are distributed throughout the entire organism.

Energy transport in biomimetic nanotubes (left) and a three-dimensional spectrum (right). Bjoern Kriete (l.) / Stefan Mueller (r.)

It is crucial for photovoltaics and other technical applications, how efficiently energy spreads in a small volume. With new methods, the path of energy in the nanometer range can now be followed precisely. Plants and bacteria lead the way: They can capture the energy of sunlight with light-harvesting antennas and transfer it to a reaction centre. Transporting energy efficiently and in a targeted fashion in a minimum of space – this is also of interest to mankind. If scientists were to master it perfectly, they could significantly improve photovoltaics and optoelectronics.

Left: Schematic illustration for the SMAIS method for 2D polymer synthesis, Right: High-resolution transmission electron microscopic image for 2D polyimide Left: by Marc Hermann, TRICKLABOR), Right: by Dr. Haoyuan Qi, Uni Ulm

Scientists at the Center for Advancing Electronics Dresden (cfaed) at TU Dresden have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time. A novel synthetic reaction route was developed for this purpose. The 2D polymers consist of only a few single atomic layers and, due to their very special properties, are a promising material for use in electronic components and systems of a new generation. The research result is a collaborative work of several groups at TU Dresden and Ulm University and was published this week in two related articles in the scientific journals "Nature Chemistry" and "Nature Communications".

A monolayer of organic molecules is placed in the focused light field and replies to this illumination by fluorescence, embedding all information about the invisible properties. Pascal Runde

Physicists and chemists at the University of Münster (Germany) have jointly succeeded in developing a so-called nano-tomographic technique which is able to detect the typically invisible properties of nano-structured fields in the focus of a lens. Such a method may help to establish nano-structured light landscapes as a tool for material machining, optical tweezers, or high-resolution imaging. The study was published in "Nature Communications".

Time-lapse images show that the enzyme ‘breathes’ during turnover: it expands and contracts aligned with the catalytic sub-steps. Its two halves communicate via a string of water molecules. Jörg Harms / MPSD

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

Left: how the t-MALDI-2-MS imaging method works. Right: an example, in which the complex structure of a mouse’s cerebellum is shown by means of the superimposition of three ion signals. Nature Research/Marcel Niehaus

Scientists at Münster University investigate cells using dual-beam laser mass spectrometry:Cells are the basic building blocks of life. The chemical composition of cells can be determined by mass spectrometry. Scientists at the University of Münster present a method which has improved the spatial resolution of “MALDI” mass spectrometry by around one-thousandth of a millimetre. The results have been published in "Nature Methods".

Porous silicon layers for more efficient lithium-ion batteries. © Marynchenko Oleksandr / shutterstock, Photo montage: Fraunhofer FEP

Within the scope of the project PoSiBat (funding reference 100275833), Fraunhofer FEP scientists were able to develop a non-toxic and efficient manufacturing process for porous silicon layers. The results of the recently completed project will be presented at the Thin Film Technology for Energy Systems workshop at V 2019 and at the Fraunhofer FEP booth No. 22 (October 8 –10, 2019, in Dresden, Germany). Lithium-ion batteries are well established due to their good properties. They have a higher energy density than other batteries. Therefore, they are used in cameras, watches, mobile devices and especially for electric vehicles. However, from a technical point of view they still offer a high potential for improving and optimizing of battery cells.

Albumin-coated nano-diamonds can cross the blood-brain barrier and be used for diagnostic and therapeutic purposes in the brain.

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

Two CD34+ stem cells containing carbon nanoparticles (coloured magenta); the cell nuclei can be seen in blue. The researchers found that the nanoparticles are encapsulated in the cell lysosomes. HHU / Stefan Fasbender

Publication in Scientific Reports

Carbon nanoparticles are a promising tool for biomedical applications, for example for targeted transportation of biologically active compounds into cells. A team of researchers from the Physics, Medicine and Chemistry departments at Heinrich Heine University Düsseldorf (HHU) has now examined whether these particles are potentially dangerous for the organism and how cells cope with them once they have been incorporated. The findings of the interdisciplinary study have just been published in the journal Scientific Reports.

Cryo-EM structure of the T. thermophilus V/A-type ATP synthase. The background shows wind-powered water pump. (c) by IST Austria, 2019

IST Austria scientists determine the first structure of a cell’s rotary engine using state-of-art microscopy. Cells rely on protein complexes known as ATP synthases or ATPases for their energy needs – adenosine triphosphate (ATP) molecules power most of the processes sustaining life. Structural biologist Professor Leonid Sazanov and his research group from the Institute of Science and Technology Austria (IST Austria) in Klosterneuburg, Austria have now determined the first atomic structure of the representative of the V/A-ATPase family, filling in the gap in the evolutionary tree of these essential molecular machines. These results obtained using the latest cryo-electron microscopy methods revealed a turbine or water mill similar structure of the enzyme and have now been published in the journal Science.

The lifetime of programmable structural dynamics can be infinitely varied in this DNA-based system. Photo: AG Walther

Programmable structural dynamics successful for first time in self-organizing fiber structures.
Cells assemble dynamically: their components are continuously exchanging and being replaced. This enables the structures to adapt easily to different situations, and by rearranging the components to respond to stimuli faster, to renew or to form just on demand. The microtubules, a scaffold structure made of protein fibers that can be found in the cytoplasm of the cells of algae, plants, fungi, animals and humans, are one such dynamic mesh. Because of their self-organizing structure, these fibers constantly form and degrade at the same time, thereby actively supporting the cell in complex tasks such as cell division or locomotion. The fibers require energy to form and maintain such dynamic states.

Stacked Janus nanocups, before being separated. University of Duisburg-Essen (UDE)

They look like interlocking egg cups, but a hen's egg is 100,000 times as thick as one of the miniature cups: Scientists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE) have made polymers to form themselves into tiny cups on their own. They could, for example, be used to remove oil residues from water. The scientists have published their results in the journal "Angewandte Chemie".

Electron microscopic image of the hybrid material. Image: Pawan Kumar / University of Alberta

Chemists at the Technical University of Munich (TUM) have developed an efficient water splitting catalyst as part of a collaborative international research effort. The catalyst comprises a double-helix semiconductor structure encased in carbon nitride. It is perfect for producing hydrogen economically and sustainably. An international team led by TUM chemist Tom Nilges and engineer Karthik Shankar from the University of Alberta have now found a stable yet flexible semiconductor structure that splits water much more efficiently than was previously possible. 

Potassium bromide molecules (pink) arrange themselves between the copper substrate (yellow) and the graphene layer (gray). This brings about electrical decoupling. © Department of Physics, University of Basel

The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. This alters the electrical properties of the graphene produced, bringing them closer to pure graphene, as reported by physicists from the universities of Basel, Modena and Munich in the journal ACS Nano.

Photoradiolabelling Using UV light, radiolabelled antibodies can be produced in just 15 minutes. Jason P. Holland, UZH

Radioactive antibodies that target cancer cells are used for medical diagnostics with PET imaging or for targeted radioimmunotherapy. Researchers from the University of Zurich have created a new method for radiolabelling antibodies using UV light. In less than 15 minutes, the proteins are ready-to-use for cancer imaging or therapy. Radioactive antibodies are used in nuclear medicine as imaging agents for positron emission tomography (PET) – an imaging technique that improves cancer diagnosis and monitoring of chemotherapy. Radioactive drugs can also be designed to kill tumors by delivering a radioactive payload specifically to the cancer cells. This treatment is called targeted radioimmunotherapy.


The crystal structure of the SALON phosphor is the reason for its excellent luminescence properties. Uni Innsbruck

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.