- Details
- Written by NB GmbH
- Category
We are delighted to share with you the introduction video of the InNoPlastic project.
- Details
- Written by Technische Universität München
- Category
During the continued progression of the Corona pandemic, rapid, inexpensive, and reliable tests will become increasingly important to determine whether people have the associated antibodies – either through infection or vaccination. Researchers at the Technical University of Munich (TUM) have now developed such a rapid antibody test. It provides the result in only eight minutes; the aim is to further reduce the process time to four minutes.
There are currently more than 20 different test procedures available for determining whether a person has antibodies against the new Corona virus. The waiting times for the results range between ten minutes and two and a half hours.
- Details
- Written by NB GmbH
- Category
COVID pandemic fast-tracks technological development that will clean plastic litter in oceans. The current COVID pandemic challenges our societies with extensive amounts of plastic mask debris released into our environment. As a response to this growing issue, and to respond to the nanoparticle pollution in the water ecosystems, several technological solutions are being accelerated to achieve the overall goal – a cleaner, safer and healthier environment for everyone. InNoPlastic, a newly launched EU H2020 research and innovation project, combines ultra-sound methodologies with other innovative solutions, to tackle plastic litter and enable easier removal from oceans and the seas worldwide.
- Details
- Written by Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
- Category
The images leave no one cold: giant vortices of floating plastic trash in the world's oceans with sometimes devastating consequences for their inhabitants – the sobering legacy of our modern lifestyle. Weathering and degradation processes produce countless tiny particles that can now be detected in virtually all ecosystems. But how dangerous are the smallest of them, so-called nanoplastics? Are they a ticking time bomb, as alarming media reports suggest? In the latest issue of the journal Nature Nanotechnology, a team from Empa and ETH Zurich examines the state of current knowledge – or lack thereof – and points out how these important questions should be addressed.
New Microscopy Method: MINSTED Resolves Fluorescent Molecules With Resolution at the Nanometer Scale
- Details
- Written by Max-Planck-Institut für biophysikalische Chemie
- Category
Scientists working with Stefan Hell at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen and the Heidelberg-based MPI for Medical Research have developed another light microscopy method, called MINSTED, which resolves fluorescently labeled details with molecular sharpness. With MINSTED, Nobel laureate Hell has come full circle. “A good 20 years ago, we fundamentally broke the diffraction resolution limit of fluorescence microscopy with STED. Until then, that was considered impossible,” says Hell. “Back then we dreamed: With STED we want to become so good that one day we will be able to separate individual molecules that are only a few nanometers apart. Now we've succeeded.” At that time, the STED principle amounted to a revolution in light microscopy. For this conceptual leap and subsequent developments, Hell received the Nobel Prize in Chemistry in 2014.
- Details
- Written by Johannes Gutenberg-Universität Mainz
- Category
New technique using nuclear spin hyperpolarization of hydrogen paves the way for further advances in the field of MRI. Magnetic resonance imaging (MRI) is already widely used in medicine for diagnostic purposes. Hyperpolarized MRI is a more recent development and its research and application potential has yet to be fully explored. Researchers at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM) have now unveiled a new technique for observing metabolic processes in the body. Their singlet-contrast MRI method employs easily-produced parahydrogen to track biochemical processes in real time. The results of their work have been published in Angewandte Chemie International Edition and chosen by the editors as a "hot paper", i.e., an important publication in a rapidly-developing and highly significant field.
- Details
- Written by Matthias Bischoff
- Category
The Beethoven’s deafness and its development are a riddle. In a previous article the authors (Luthe and Bischoff, 2020) suggested poisoning by ultrafine particles through lead corrosion of e.g. organ pipes. In the present article, they propose that Beethoven’s health problems, especially his deafness, were caused by a combination of exposure to lead-containing micro- and nanoparticles. In addition, high alcohol consumption weakened the defense against radical oxidative stress. The authors further hypothesize that the ear is a major portal of entry for nanoparticles, in this case causing lead poisoning of the inner ear.
- Details
- Written by Matthias Bischoff
- Category
In this article the authors (Luthe and Bischoff, 2020) connect recent findings in nano-toxicology with the investigations in Ludwig van Beethoven’s supposed saturnism. Namely, contradicting measurements of lead concentration in Beethoven’s hair and bone cannot be explained by the current hypothesis discussed among scientists. This mismatch may be called the key to the conundrum. It is also of broader interest to toxicologists, as the circumstances of Beethoven’s poisoning elucidate a general issue of particle uptake and resulting effects, which is quite neglected until now. They suggest that lead containing micro- and nanoparticles, i.e. lead oxides and acetate are the basis for the contradicting lead levels. The different portal of entry discriminates the concentrations in the bones when compared to the hair follicles. The authors also consider the source for these ultrafine lead-containing particles in Beethoven’s environment, and propose a complete explanation for his saturnism.
- Details
- Written by Max-Planck-Institut für biophysikalische Chemie
- Category
Magnetic resonance imaging (MRI) is indispensable in medical diagnostics. However, MRI units are large and expensive to acquire and operate. With smaller and cost-efficient systems, MRI would be more flexible and more people could benefit from the technique. Such mini MRI units generate a much weaker signal that is difficult to analyze, though. Researchers at the Max Planck Institute (MPI) for Biophysical Chemistry and the Center for Biostructural Imaging of Neurodegeneration have now developed a method amplifying the signal so much that they could monitor a metabolic reaction in real time with a miniature MRI. This is an important contribution to making flexible small MRI devices usable.
- Details
- Written by Max-Planck-Institut für Struktur und Dynamik der Materie
- Category
Crystal symmetry is one of the decisive physical attributes that determines the properties of a material. In particular, the behaviour of an electron is largely affected by the symmetry of the crystal which in turn governs the fundamental behaviour of the material, such as its conductive or optical properties. With recent developments of experimental techniques and advances in ultrafast laser experiments, another symmetry besides the crystal has turned out to influence the electrons: the symmetry of light.
- Details
- Written by Max-Planck-Institut für molekulare Biomedizin
- Category
Max Planck Innovation licenses process for the generation of organ-like tissue aggregates to biotech company StemoniX
***Sometimes hundreds of thousands of potential therapeutics need to be tested in large-scale, fully automated experiments to identify a single effective drug. Most compounds do not work as desired, and some are even toxic. Since the development of the induced Pluripotent Stem (iPS) Cell technology in 2006, researchers have been able to produce stem cells from skin biopsies and blood samples. To approach physiological conditions in the laboratory, many researchers use iPS cell technology to produce three-dimensional, organ-like tissue aggregates (organoids).
- Details
- Written by Max-Planck-Institut für biophysikalische Chemie
- Category
A crucial resolution barrier in cryo-electron microscopy has been broken. Holger Stark and his team at the Max Planck Institute (MPI) for Biophysical Chemistry have observed single atoms in a protein structure for the first time and taken the sharpest images ever with this method. Such unprecedented details are essential to understand how proteins perform their work in the living cell or cause diseases. The technique can in future also be used to develop active compounds for new drugs.
- Details
- Written by Julius-Maximilians-Universität Würzburg
- Category
Researchers at the universities of Würzburg and Frankfurt have developed a new compound for treating cancer. It destroys a protein that triggers its development.
The villain in this drama has a pretty name: Aurora – Latin for dawn. In the world of biochemistry, however, Aurora (more precisely: Aurora-A kinase) stands for a protein that causes extensive damage. There, it has been known for a long time that Aurora often causes cancer. It triggers the development of leukemias and many pediatric cancers, such as neuroblastomas.
- Details
- Written by Max-Planck-Institut für Polymerforschung
- Category
According to the Federal Statistical Office of Germany, cancer is one of the most frequent causes of death, accounting for almost 25% of all deaths cases. Chemotherapy is often used as a treatment, but also brings side effects for healthy organs. Scientists around David Ng, group leader at the Max Planck Institute for Polymer Research, are now trying to take a completely different approach: By means of targeted and localized disruption of the cancer cells’ structure, its self-destruction mechanism can be activated. In laboratory experiments, they have already demonstrated initial successes.
- Details
- Written by Universität Bern
- Category
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable. The new process is industrially applicable and can be used to further optimize fuel cell powered vehicles without CO2 emissions.
- Details
- Written by Max-Planck-Institut für Polymerforschung
- Category
Semiconductors made of organic materials, e.g. for light-emitting diodes (OLEDs) and solar cells, could replace or supplement silicon-based electronics in the future. The efficiency of such devices depends crucially on the quality of thin layers of such organic semiconductors. These layers are created by coating or printing “inks” that contain the material. Researchers at the Max Planck Institute for Polymer Research (MPI-P) have developed a computer model that predicts the quality of such layers as a function of processing conditions, such as the drying time of the ink or the speed coating. This model aims to accelerate the time-consuming approaches for process and product optimization.