Trim-Away directly and rapidly destroys a fluorescent protein in an egg cell. From left: cell before introduction of antibodies directed against the protein and 10, 30, and 60 minutes thereafter. Dean Clift / MRC Laboratory of Molecular Biology

In our body, proteins carry out almost all essential processes, and protein malfunction causes many diseases. To study the function of a protein, researchers remove it from the cell and subsequently analyze the consequences. The two methods typically used are genome editing by CRISPR/Cas, and RNA interference, acting on the level of DNA or RNA, respectively. However, their influence on protein amounts is indirect and takes time. Scientists now present a new method, called Trim-Away, allowing to directly and quickly deplete any protein from any cell type. As Trim-Away can distinguish between different variants of a protein, it also opens up new venues for the therapy of diseases.

Getting to know materials in detail: Fraunhofer LBF has researched the systematic structure-property relationships for functionalized polyolefins. Photo: Fraunhofer LBF

Functionalized polyolefins are of great economic importance as bonding agents between polyolefins and polar surfaces. Despite years of effort, up to now there has never been any analytic method that could provide a comprehensive understanding of these materials to enable their effectiveness to be quickly assessed, for instance as part of incoming goods controlling. Now, a chromatographic method developed at the Fraunhofer Institute for Structural Durability and System Reliability LBF makes it possible to develop systematic structure-property relationships for these materials for the first time.

Electron microscope image of the platelet-shaped lithium cobalt phosphate crystals. Image: Katia Rodewald / TUM

Power on the go is in demand: The higher the battery capacity, the larger the range of electric cars and the longer the operating time of cell phones and laptops. Dr. Jennifer Ludwig of the Technical University of Munich (TUM) has developed a process that allows a fast, simple, and cost-effective production of the promising cathode material lithium cobalt phosphate in high quality. The chemist was awarded the Evonik Research Prize for her work.

CRISPR-UMI relies on the addition of a high complexity barcoding system – or Unique Molecular Identifier (UMI) – that marks each single mutant clone and allows its tracking within a population. (c) Philipp Zaufel,

CRISPR-UMI, a novel method developed at IMBA, facilitates extremely robust and sensitive screens by tracking single mutants within a population of cells. “The whole is greater than the sum of its parts” is an adage that applies to many concepts in biology. For genetic screens, however, it is the individual parts, i.e. the individual cells, that are the focus of the next generation of CRISPR-Cas9 screens. Single mutants within a population reveal new findings that could revolutionise target discovery and offer fresh insights into the biological systems of cell differentiation and cancer.

Schematic view of the experimental setup of the “cryofuge”. Graphic: MPQ, Quantum Dynamics Division

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules. 

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at the same time. Scientists around Dr. Martin Zeppenfeld from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have now taken an important step in this direction by developing a new cooling method: the so-called “cryofuge” combines cryogenic buffer-gas cooling with a special kind of centrifuge in which rotating electric fields decelerate the precooled molecules down to velocities of less than 20 metres per second.

Up to eight different experiments can be simultaneously performed in this screening electrolyzer. Each small plastic cup houses two electrodes. photo/©: Carsten Siering, JGU

In the cooperative EPSYLON research project funded by the German Federal Ministry of Education and Research, scientists from Johannes Gutenberg University Mainz (JGU) and Evonik Performance Materials GmbH have succeeded in developing a state-of-the-art and innovative electro-organic synthesis. The results of their research, presented in last week's issue of Science Advances, allow the use of electrosynthesis as a trend-setting and sustainable green chemistry for technical applications. The method developed allows the operator to react flexibly to the available supply of electricity. Moreover, the operator no longer has to rely on customized electrolysis apparatuses and can use a wide variety of different equipment.

OLED on stainless steel. © Fraunhofer FEP

Stainless steel is normally associated with kitchenware and chemical Plant pipe. However, stainless steel foil has also been utilized for several years in thin-film photovoltaics and batteries. Now stainless steel can also serve as a substrate for flexible electronic components. Fraunhofer Institute FEP will be presenting OLEDs on gauzy stainless steel foil during aimcal 2017 in Tampa/ USA, from October 15 – 18, 2017. The novel application on display in Booth 22 was developed in cooperation with the Nippon Steel & Sumikin Materials Co., Ltd. (NSMAT) and Nippon Steel & Sumitomo Metal Corporation (NSSMC).

DESY's Anton Barty (left) and Henry Chapman (right), seen at the SPB/SFX instrument, were in one of the first two user groups. Photo: DESY, Lars Berg

The first users have now started experiments at the new international research facility in Schenefeld. “This is a very important event, and we are very happy that the first users have now arrived at European XFEL so we can do a full scale test of the facility” said European XFEL Managing Director Prof. Dr. Robert Feidenhans’l. ”The instruments and the supporting teams have made great progress in the recent weeks and months. Together with our first users, we will now do the first real commissioning experiments and collect valuable scientific data. At the same time, we will continue to further advance our facility and concentrate on further improving the integration and stability of the instrumentation” he added.

The development of novel, fluorescence-based biosensors, which unfold in response to mechanical loads, allows the evaluation of molecular forces across specific structures within living cells. © MPI für Biochemie

Proteins are often considered as molecular machines. To understand how they work, it is not enough to visualize the involved proteins under the microscope. Wherever machines are at work mechanical forces occur, which in turn influence biological processes. These extremely small intracellular forces can be measured with the help of molecular force sensors. Now researchers at the Max Planck Institute of Biochemistry in Martinsried have developed molecular probes that can measure forces across multiple proteins with high resolution in cells. The results of their work were published in the journal Nature Methods.

Schematic illustration of the bio-catalytic nanocompartment with encapsulated enzyme phosphoglucomutase for the conversion of glucose-1-phosphate into the desired product glucose-6-phosphate. University of Basel

Researchers at the University of Basel succeeded in developing capsules capable of producing the bio-molecule glucose-6-phosphate that plays an important role in metabolic processes. The researchers were able to produce the metabolite in conditions very similar to the biochemical reaction inside natural cells. The results have been published in the scientific journal Chemical Communications.

Secondary structure formation enables morphology control while reactive groups in the polypeptide segment allow for adjustment of function. ill./©:Kristina Klinker/Olga Schäfer

In cooperation with researchers from the University of Tokyo and Gutenberg Research Awardee Prof. Kazunori Kataoka, Chemists from Mainz have been able to demonstrate that reactive polypept(o)ides constitute ideal building blocks to control morphology and function of carrier systems in a simple but precise manner.

A diagram illustrating the processes at the catalytic surface of a liquid drop of gallium containing small amounts of palladium during the catalytic dehydrogenation of n-butane.  Image: FAU/Mathias Grabau and Florian Maier

Catalysts are agents that initiate chemical reactions, speed them up or significantly increase the yield of the desired product. New and improved catalysts are thus considered the key to creating more sustainable and efficient production processes in the chemical industry. In a joint research project, five professors at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and their teams have recently discovered how to bypass the known drawbacks of the technical catalysts that are currently in use by means of a new material concept that makes the creation of significantly more efficient catalysts possible.

The analysis of the tunneling currents of a scanning tunneling microscope reveal the active sites on the catalyst surface. Image: Christoph Hohmann / NIM

Chemistry live: Using a scanning tunneling microscope, researchers at the Technical University of Munich (TUM) were able for the very first time to witness in detail the activity of catalysts during an electro-chemical reaction. The measurements show how the surface structure of the catalysts influences their activity. The new analysis method can now be used to improve catalysts for the electrochemical industry.

Visible to the naked eye: A wafer-thin graphene flake obtained via chemical vapor deposition. The red coloration of the copper substrate appears when the sample is heated in air. (Photo: J. Kraus/ TUM)

Each atomic layer thin, tear-resistant, and stable. Graphene is seen as the material of the future. It is ideal for e.g. producing ultra-light electronics or highly stable mechanical components. But the wafer-thin carbon layers are difficult to produce. At the Technical University of Munich (TUM), Jürgen Kraus has manufactured self-supporting graphene membranes, and at the same time systematically investigated and optimized the growth of the graphene crystals. He was awarded the Evonik Research Prize for his work.

Like a spaceship, the complex sugar molecule (coloured) lands exactly on the tumor protein galectin-1, which here looks like a meteorite and is shown in black and white. Picture: Workgroup Seibel, VCH-Wiley

Scientists from the University of Würzburg have synthesized a complex sugar molecule which specifically binds to the tumor protein Galectin-1. This could help to recognize tumors at an early stage and to combat them in a targeted manner. Galectins are a family of proteins that have become a promising source of cancer research in recent years. A representative thereof is galectin-1. It sits on the surface of all human cells; on tumor cells, however, it occurs in enormous quantities. This makes it an interesting target for diagnostics and therapy.

Illustration of the new synthetic method. WWU/Frank Glorius

Chemists led by Prof. Frank Glorius from the University of Münster have developed a new and practical synthetic method for the formation of fluorinated three-dimensional “saturated” molecular ring structures. This development can have great importance for the efficient production of new molecules and, consequently, new drugs, crop protection agents and functional materials.

feed-image Feed Entries