- Details
- Written by Matthias Bischoff
- Category
The Beethoven’s deafness and its development are a riddle. In a previous article the authors (Luthe and Bischoff, 2020) suggested poisoning by ultrafine particles through lead corrosion of e.g. organ pipes. In the present article, they propose that Beethoven’s health problems, especially his deafness, were caused by a combination of exposure to lead-containing micro- and nanoparticles. In addition, high alcohol consumption weakened the defense against radical oxidative stress. The authors further hypothesize that the ear is a major portal of entry for nanoparticles, in this case causing lead poisoning of the inner ear.
- Details
- Written by Matthias Bischoff
- Category
In this article the authors (Luthe and Bischoff, 2020) connect recent findings in nano-toxicology with the investigations in Ludwig van Beethoven’s supposed saturnism. Namely, contradicting measurements of lead concentration in Beethoven’s hair and bone cannot be explained by the current hypothesis discussed among scientists. This mismatch may be called the key to the conundrum. It is also of broader interest to toxicologists, as the circumstances of Beethoven’s poisoning elucidate a general issue of particle uptake and resulting effects, which is quite neglected until now. They suggest that lead containing micro- and nanoparticles, i.e. lead oxides and acetate are the basis for the contradicting lead levels. The different portal of entry discriminates the concentrations in the bones when compared to the hair follicles. The authors also consider the source for these ultrafine lead-containing particles in Beethoven’s environment, and propose a complete explanation for his saturnism.
- Details
- Written by Max-Planck-Institut für biophysikalische Chemie
- Category
Magnetic resonance imaging (MRI) is indispensable in medical diagnostics. However, MRI units are large and expensive to acquire and operate. With smaller and cost-efficient systems, MRI would be more flexible and more people could benefit from the technique. Such mini MRI units generate a much weaker signal that is difficult to analyze, though. Researchers at the Max Planck Institute (MPI) for Biophysical Chemistry and the Center for Biostructural Imaging of Neurodegeneration have now developed a method amplifying the signal so much that they could monitor a metabolic reaction in real time with a miniature MRI. This is an important contribution to making flexible small MRI devices usable.
- Details
- Written by Max-Planck-Institut für Struktur und Dynamik der Materie
- Category
Crystal symmetry is one of the decisive physical attributes that determines the properties of a material. In particular, the behaviour of an electron is largely affected by the symmetry of the crystal which in turn governs the fundamental behaviour of the material, such as its conductive or optical properties. With recent developments of experimental techniques and advances in ultrafast laser experiments, another symmetry besides the crystal has turned out to influence the electrons: the symmetry of light.
- Details
- Written by Max-Planck-Institut für molekulare Biomedizin
- Category
Max Planck Innovation licenses process for the generation of organ-like tissue aggregates to biotech company StemoniX
***Sometimes hundreds of thousands of potential therapeutics need to be tested in large-scale, fully automated experiments to identify a single effective drug. Most compounds do not work as desired, and some are even toxic. Since the development of the induced Pluripotent Stem (iPS) Cell technology in 2006, researchers have been able to produce stem cells from skin biopsies and blood samples. To approach physiological conditions in the laboratory, many researchers use iPS cell technology to produce three-dimensional, organ-like tissue aggregates (organoids).
- Details
- Written by Max-Planck-Institut für biophysikalische Chemie
- Category
A crucial resolution barrier in cryo-electron microscopy has been broken. Holger Stark and his team at the Max Planck Institute (MPI) for Biophysical Chemistry have observed single atoms in a protein structure for the first time and taken the sharpest images ever with this method. Such unprecedented details are essential to understand how proteins perform their work in the living cell or cause diseases. The technique can in future also be used to develop active compounds for new drugs.
- Details
- Written by Julius-Maximilians-Universität Würzburg
- Category
Researchers at the universities of Würzburg and Frankfurt have developed a new compound for treating cancer. It destroys a protein that triggers its development.
The villain in this drama has a pretty name: Aurora – Latin for dawn. In the world of biochemistry, however, Aurora (more precisely: Aurora-A kinase) stands for a protein that causes extensive damage. There, it has been known for a long time that Aurora often causes cancer. It triggers the development of leukemias and many pediatric cancers, such as neuroblastomas.
- Details
- Written by Max-Planck-Institut für Polymerforschung
- Category
According to the Federal Statistical Office of Germany, cancer is one of the most frequent causes of death, accounting for almost 25% of all deaths cases. Chemotherapy is often used as a treatment, but also brings side effects for healthy organs. Scientists around David Ng, group leader at the Max Planck Institute for Polymer Research, are now trying to take a completely different approach: By means of targeted and localized disruption of the cancer cells’ structure, its self-destruction mechanism can be activated. In laboratory experiments, they have already demonstrated initial successes.
- Details
- Written by Universität Bern
- Category
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable. The new process is industrially applicable and can be used to further optimize fuel cell powered vehicles without CO2 emissions.
- Details
- Written by Max-Planck-Institut für Polymerforschung
- Category
Semiconductors made of organic materials, e.g. for light-emitting diodes (OLEDs) and solar cells, could replace or supplement silicon-based electronics in the future. The efficiency of such devices depends crucially on the quality of thin layers of such organic semiconductors. These layers are created by coating or printing “inks” that contain the material. Researchers at the Max Planck Institute for Polymer Research (MPI-P) have developed a computer model that predicts the quality of such layers as a function of processing conditions, such as the drying time of the ink or the speed coating. This model aims to accelerate the time-consuming approaches for process and product optimization.
- Details
- Written by Leibniz-Institut für Photonische Technologien e. V.
- Category
A research team from the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena has built electrodes with outstanding optical and electronic properties from leaves. The researchers have coated leaf veins with copper and thus transformed them into electrically conductive and optically transparent electrodes. Designed on the basis of nature, the leaf-structure electrodes could be used to design novel solar cells, LEDs or displays.
- Details
- Written by Martin-Luther-Universität Halle-Wittenberg
- Category
New coatings on implants could help make them more compatible. Researchers at the Martin Luther University Halle-Wittenberg (MLU) have developed a new method of applying anti-inflammatory substances to implants in order to inhibit undesirable inflammatory reactions in the body. Their study was recently published in the "International Journal of Molecular Sciences".
- Details
- Written by Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
- Category
Graphene triangles with an edge length of only a few atoms behave like peculiar quantum magnets. When two of these nano-triangles are joined, a "quantum entanglement" of their magnetic moments takes place: the structure becomes antiferromagnetic. This could be a breakthrough for future magnetic materials, and another step towards spintronics. An international group led by Empa researchers recently published the results in the journal "Angewandte Chemie".
- Details
- Written by Fraunhofer-Gesellschaft
- Category
How can mass production methods be applied to individualized products? One answer is to use a combination of digital manufacturing technologies, for example by integrating digital printing and laser processing into traditional manufacturing processes. This paves the way for in-line product customization. Six Fraunhofer institutes have pooled their expertise to take the new process to the next level.
- Details
- Written by Universität Zürich
- Category
Researchers at the University of Zurich have developed a new X-ray contrast agent. The contrast agent is easier to use and distributes into all blood vessels more reliably, increasing the precision of vascular imaging. This reduces the number of animals required in research experiments.
Various diseases in humans and animals – such as tumors, strokes or chronic kidney disease – damage the blood vessels. Capillaries, the smallest blood vessels in the body, are particularly affected. The large surface area of the capillary network enables oxygen to be exchanged between the blood and the surrounding tissue, such as the muscles when we exercise or the brain when we think.
- Details
- Written by Martin-Luther-Universität Halle-Wittenberg
- Category
The drug nimodipine could prevent nerve cells from dying after brain surgery. Pharmacists at Martin Luther University Halle-Wittenberg (MLU), in cooperation with neurosurgeons at University Hospital Halle (Saale) (UKH), have developed a new method that enables the drug to be administered directly in the brain with fewer side effects. Their findings were published in the “European Journal of Pharmaceutics and Biopharmaceutics”.