Artificial metalloenzyme penetrates a mammalian cell, where it accelerates the release of a hormone. This activates a gene switch which then leads to the production of a fluorescent indicator protein. University of Basel, Yasunori Okamoto

Complex reaction cascades can be triggered in artificial molecular systems: Swiss scientists have constructed an enzyme than can penetrate a mammalian cell and accelerate the release of a hormone. This then activates a gene switch that triggers the creation of a fluorescent protein. The findings were reported by researchers from the NCCR Molecular Systems Engineering, led by the University of Basel and ETH Zurich.

Structure of a volume-regulated chloride channel (center: ribbon diagram, right: selectivity filter, left: regions with positively charged amino acids). Raimund Dutzler, UZH

Biochemists at the University of Zurich have determined the detailed structure of a volume-regulated chloride channel. This cellular valve is activated in response to swelling to prevent the cell from bursting. The protein also plays an important role in the uptake of chemotherapeutics and the release of neurotransmitters after a stroke. The controlled regulation of its activity thus opens up a promising strategy for novel therapies.

DZIF scientists (from left to right): Alexander Klimka, Sonja Mertins, Paul Higgins. Uniklinik Köln/Klimka

Early detection of antibiotic resistant pathogens can be life-saving. DZIF-scientists at the Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, have developed an antibody-based diagnostic test, which can identify carbapenem-resistant Acinetobacter baumannii bacteria in only 10 minutes – in a process similar to a pregnancy test.

The long non-coding RNA called A-ROD functions within a loop to recruit proteins to the DKK1 gene.  © E. Ntini / Max Planck Institute for Molecular Genetics

Enhancers are regulatory regions of the DNA, giving rise to “long non-coding RNAs” (lncRNAs), which are known as crucial regulators of gene expression. Scientists from the Max Planck Institute for Molecular Genetics in Berlin now have shown that a lncRNA called A-ROD is only functional the moment it is released from chromatin into the nucleoplasm. In the current issue of Nature Communications the researchers demonstrate that the regulatory interaction requires dissociation of A-ROD from chromatin, with target specificity ensured within the pre-established chromosomal proximity. This can heavily influence our understanding of dynamic regulation of gene expression in biological processes.