Three-dimensional structure of a nanobody. Tino Pleiner and Sergei Trakhanov / MPI for Biophysical Chemistry

Antibodies are indispensable in biological research and medical diagnostics. However, their production is time-consuming, expensive, and requires the use of many animals. Scientists at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen, Germany, have now developed so-called secondary nanobodies that can replace the most-used antibodies and may drastically reduce the number of animals in antibody production. This is possible because the secondary nanobodies can be produced in large scale by bacteria. Moreover, the secondary nanobodies outperform their traditional antibody counterparts in key cell-biological applications.

Red algae move towards the light and excrete chains of sugar molecules. By means of time-variable light patterns, the researchers obtain customized templates from these long, fine polymer threads, which they use for functional ceramics. (Photo: v. Opdenbosch/TUM)

Biofilms are generally seen as a problem to be eradicated due to the hazards they pose for humans and materials. However, these communities of algae, fungi, or bacteria possess interesting properties both from a scientific and a technical standpoint. A team from the Technical University of Munich (TUM) describes processes from the field of biology that utilize biofilms as ‘construction workers’ to create structural templates for new materials that possess the properties of natural materials. In the past, this was only possible to a limited extent.

Superimposing the ten structures with the least energy shows nicely which structure the hIAPP molecule prefers in a membrane environment. Image: Diana Rodriguez Camargo / TUM

When proteins misfold, accumulate and clump in insulin-producing cells in the pancreas, they can kill these cells. Now, researchers at the Technical University of Munich (TUM), the University of Michigan and the Helmholtz-Zentrum Muenchen have obtained a structural snapshot of these proteins when they are most toxic, detailing them down to an atomic level. The researchers hope this kind of detail can help in the search for drugs to target the incorrectly folding proteins.

Pharmaceutical PhD student Julia Ernst with inhalers of a nanoparticle suspension. Jena researchers are developing an efficient method for treating often deadly respiratory infections. (Photo: Jan-Peter Kasper/FSU)

Scientists from Medicine and Pharmacy of the Friedrich Schiller University Jena, Germany fight Mucoviscidosis with Nanoparticles. Around one in 3,300 children in Germany is born with Mucoviscidosis. A characteristic of this illness is that one channel albumen on the cell surface is disturbed by mutations. Thus, the amount of water of different secretions in the body is reduced which creates a tough mucus. As a consequence, inner organs malfunction. Moreover, the mucus blocks the airways. Thus, the self regulatory function of the lung is disturbed, the mucus is colonized by bacteria and chronic infections follow.