Time-lapse images show that the enzyme ‘breathes’ during turnover: it expands and contracts aligned with the catalytic sub-steps. Its two halves communicate via a string of water molecules. Jörg Harms / MPSD

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

Left: how the t-MALDI-2-MS imaging method works. Right: an example, in which the complex structure of a mouse’s cerebellum is shown by means of the superimposition of three ion signals. Nature Research/Marcel Niehaus

Scientists at Münster University investigate cells using dual-beam laser mass spectrometry:Cells are the basic building blocks of life. The chemical composition of cells can be determined by mass spectrometry. Scientists at the University of Münster present a method which has improved the spatial resolution of “MALDI” mass spectrometry by around one-thousandth of a millimetre. The results have been published in "Nature Methods".

Albumin-coated nano-diamonds can cross the blood-brain barrier and be used for diagnostic and therapeutic purposes in the brain.

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

Two CD34+ stem cells containing carbon nanoparticles (coloured magenta); the cell nuclei can be seen in blue. The researchers found that the nanoparticles are encapsulated in the cell lysosomes. HHU / Stefan Fasbender

Publication in Scientific Reports

Carbon nanoparticles are a promising tool for biomedical applications, for example for targeted transportation of biologically active compounds into cells. A team of researchers from the Physics, Medicine and Chemistry departments at Heinrich Heine University Düsseldorf (HHU) has now examined whether these particles are potentially dangerous for the organism and how cells cope with them once they have been incorporated. The findings of the interdisciplinary study have just been published in the journal Scientific Reports.