Nanoparticles in the blood: The stealth cap prevents blood components from adhering. The surface has been cross-linked by UV radiation and is therefore stable in biological systems. HZDR/Sahneweiß/istockphoto.com/Thomas-Soellner/Molekuul

A team of scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with the Monash University Australia, has succeeded in significantly increasing the stability and biocompatibility of special light-transducing nanoparticles. The team has developed so-called “upconverting” nanoparticles that not only convert infrared light into UV-visible light, but also are water-soluble, remain stable in complex body fluids such as blood serum, and can be used to store medications. They have created a tool that could potentially make the fight against cancer significantly more effective. The results were published in the journal "Angewandte Chemie" (DOI: 10.1002/anie.201811003).

Like the earthworm: The new INM breathing system lubricates itself when pressure is applied to the material. Source: Iris Maurer; free within this press release

Earthworms are always clean, even if they come from moist, sticky soil. They owe this to a dirt-repellent, lubricating layer, which forms itself again and again on its skin. Researchers at INM have now artificially recreated this system of nature: They developed a material with a surface structure that provides itself with lubricant whenever pressure is applied. Because the lubricated material reduces friction and prevents the growth of microbes, scientists can envision numerous applications in industry and biomedicine.

The illustrations show in comparison how the blood circulation in the human body (left) and the channels on the multi-organ chip (right) supply the liver, the kidneys and other organs or tissues. © Fraunhofer IWS Dresden

Dresden Fraunhofer engineers have developed a so-called "multi-organ chip". This microsystem from the Fraunhofer Institute for Material and Beam Technology IWS Dresden, which has now received an "EARTO Innovation Award" in Brussels, simulates the blood circulation and the organs of animals or humans. The "lab-on-a-chip" will help industry to develop new drugs and cosmetics more quickly than before. But what is even more important: "We see good opportunities to eliminate the need for many animal experiments," emphasized Dr. Udo Klotzbach, Business Unit Manager Microtechnology at Fraunhofer IWS. In addition, this system opens the door to individualized medicine a little further, in which doctors can determine an exactly fitting therapy for each patient within days instead of years.

The international research team is working on a treatment on dementia like Alzheimer, which leads to a death of neuronal cells. © shutterstock.com/Naeblys

About 29 million people around the world are affected by the disease "Alzheimer". In an international collaboration, scientists of the Max Planck Institute for Polymer Research (MPI-P) in Mainz together with teams from Italy, Great Britain, Belgium and the USA are now working together on an approach for a therapy. On the one hand, the goal is to understand the processes occurring in the brain that lead to the disease; on the other hand the development of a method for targeted drug delivery.