Trim-Away directly and rapidly destroys a fluorescent protein in an egg cell. From left: cell before introduction of antibodies directed against the protein and 10, 30, and 60 minutes thereafter. Dean Clift / MRC Laboratory of Molecular Biology

In our body, proteins carry out almost all essential processes, and protein malfunction causes many diseases. To study the function of a protein, researchers remove it from the cell and subsequently analyze the consequences. The two methods typically used are genome editing by CRISPR/Cas, and RNA interference, acting on the level of DNA or RNA, respectively. However, their influence on protein amounts is indirect and takes time. Scientists now present a new method, called Trim-Away, allowing to directly and quickly deplete any protein from any cell type. As Trim-Away can distinguish between different variants of a protein, it also opens up new venues for the therapy of diseases.

Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap. photo/©: QUANTUM / Thomas Ruster

A future quantum computer, using “quantum bits” or qubits, might be able to solve problems which are not tractable for classical computers. Scientists are currently struggling to build devices with more than a few qubits, with the challenge arising that the qubits mutually hamper each other’s proper operation. Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap. The work by Kaufmann and coworkers appeared in the high rank international journal Physical Review Letters 119, 150503.

The waveform-controlled laser pulse creates a plasmon-enhanced near-field that drives the forward acceleration of an electron during its passage through the nanometer-sized metal cluster.  c University of Rostock

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Torben Jasper-Tönnies placed a single atom at the tip of the scanning tunnelling microscope and was able to join a tiny wire with a diameter of just one atom to an electrical circuit. Photo: Siekmann/CAU

The increasing miniaturisation in electronics will result in components which consist of only a few molecules, or even just one molecule. An international research team from Kiel University (CAU) and the Donostia International Physics Center in San Sebastián/Spain, has developed a molecule integrating a wire with a diameter of only a single atom. They discovered that the current can be regulated via this molecular wire. It works like a nano power switch, and makes the use of molecular wires in electronic components at the nano scale feasible. The research team’s findings appeared in the scientific journal Physical Review Letters.

Urea reacts with the enzymes on the inside wall of the nanotube and this biocatalytic reaction propels the tube forward. MPI-IS

For the second time, Dr. Samuel Sánchez from the Max Planck Institute for Intelligent Systems in Stuttgart receives the Guinness World Record for the smallest nanotube travelling through fluid like a jet engine. Stuttgart (lb) - Dr. Samuel Sánchez is thrilled, just like last time he received a Guinness World Record for the smallest jet engine ever created. Sánchez is a Research Group Leader at the Max Planck Institute for Intelligent Systems in Stuttgart where he heads the smart nano-bio-devices group. Together with scientist Xing Ma from China, the 37-year-old developed an engine 220 nm in diameter, roughly 200 times smaller than the diameter of a human hair.

Getting to know materials in detail: Fraunhofer LBF has researched the systematic structure-property relationships for functionalized polyolefins. Photo: Fraunhofer LBF

Functionalized polyolefins are of great economic importance as bonding agents between polyolefins and polar surfaces. Despite years of effort, up to now there has never been any analytic method that could provide a comprehensive understanding of these materials to enable their effectiveness to be quickly assessed, for instance as part of incoming goods controlling. Now, a chromatographic method developed at the Fraunhofer Institute for Structural Durability and System Reliability LBF makes it possible to develop systematic structure-property relationships for these materials for the first time.

Electron microscope image of the platelet-shaped lithium cobalt phosphate crystals. Image: Katia Rodewald / TUM

Power on the go is in demand: The higher the battery capacity, the larger the range of electric cars and the longer the operating time of cell phones and laptops. Dr. Jennifer Ludwig of the Technical University of Munich (TUM) has developed a process that allows a fast, simple, and cost-effective production of the promising cathode material lithium cobalt phosphate in high quality. The chemist was awarded the Evonik Research Prize for her work.

CRISPR-UMI relies on the addition of a high complexity barcoding system – or Unique Molecular Identifier (UMI) – that marks each single mutant clone and allows its tracking within a population. (c) Philipp Zaufel, maximcapra.com

CRISPR-UMI, a novel method developed at IMBA, facilitates extremely robust and sensitive screens by tracking single mutants within a population of cells. “The whole is greater than the sum of its parts” is an adage that applies to many concepts in biology. For genetic screens, however, it is the individual parts, i.e. the individual cells, that are the focus of the next generation of CRISPR-Cas9 screens. Single mutants within a population reveal new findings that could revolutionise target discovery and offer fresh insights into the biological systems of cell differentiation and cancer.

An engineer performs robotics-supported testing of steel sheets for mechanical properties (residual stresses) using micromagnetic testing (3MA). Fraunhofer IZFP / Uwe Bellhäuser

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

Schematic view of the experimental setup of the “cryofuge”. Graphic: MPQ, Quantum Dynamics Division

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules. 

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at the same time. Scientists around Dr. Martin Zeppenfeld from the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have now taken an important step in this direction by developing a new cooling method: the so-called “cryofuge” combines cryogenic buffer-gas cooling with a special kind of centrifuge in which rotating electric fields decelerate the precooled molecules down to velocities of less than 20 metres per second.

Kish graphite is a waste product from steel production. It could be used to make a cheap rechargeable battery out of abundant materials. Empa / ETH Zürich

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out waste graphite and scrap metal. Kostiantyn Kravchyk works in the group of Maksym Kovalenko. This research group is based at both ETH Zurich and in Empa’s Laboratory for Thin Films and Photovoltaics. The two researchers’ ambitious goal at the Empa branch is to make a battery out of the most common elements in the Earth’s crust – such as magnesium or aluminum. These metals offer a high degree of safety, even if the anode is made of pure metal. This also offers the opportunity to assemble the batteries in a very simple and inexpensive way and to rapidly upscale the production.

Up to eight different experiments can be simultaneously performed in this screening electrolyzer. Each small plastic cup houses two electrodes. photo/©: Carsten Siering, JGU

In the cooperative EPSYLON research project funded by the German Federal Ministry of Education and Research, scientists from Johannes Gutenberg University Mainz (JGU) and Evonik Performance Materials GmbH have succeeded in developing a state-of-the-art and innovative electro-organic synthesis. The results of their research, presented in last week's issue of Science Advances, allow the use of electrosynthesis as a trend-setting and sustainable green chemistry for technical applications. The method developed allows the operator to react flexibly to the available supply of electricity. Moreover, the operator no longer has to rely on customized electrolysis apparatuses and can use a wide variety of different equipment.

Multifunction data glasses with integrated OLED microdisplays,left: demonstrator for augmented reality applications (AR), right: demonstrator for immersive virtual reality (VR). © Fraunhofer FEP

The bidirectional OLED microdisplays developed at Fraunhofer FEP were successfully integrated for the first time into a demonstrator of data glasses for representing augmented and virtual realties (AR and VR) as well as 2D and 3D content. The new data glasses will be debuted during awe europe in the Munich Ordercenter (MOC Veranstaltungscenter München) at the Fraunhofer FEP booth (No. 420) October 19th and 20th, 2017.

This photo shows the vacuum chamber used to measure the 2S-4P transition frequency in atomic hydrogen. The purple glow in the back stems from the microwave discharge that dissociates hydrogen molecules into hydrogen atoms. The blue light in the front is fluorescence from the ultraviolet laser that excites the atoms to the 2S state. The turquoise blue glow is stray light from the laser system used to measure the frequency of the 2S-4P transition. (Photo: MPQ)

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen. It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly smaller, by four standard deviations, than previous determinations using regular hydrogen. This discrepancy and its origin have attracted much attention in the scientific community, with even extensions of the so-called standard model of physics being discussed.

In nature, the hot, dense matter of electron gas occurs inside planets, such as here in Jupiter. Photo: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset

Electrons are an elementary component of our world: they surround the core of all atoms, are essential to the formation of molecules, and primarily determine the properties of solids and liquids. They are also the charge carriers of electrical current, without which our high-tech environment with smartphones, computers and even the traditional light bulb would not be conceivable. In spite of their omnipresence in everyday life, we have not yet been able to accurately describe the behaviour of interacting electrons - only approximate it in models - especially at extreme temperatures and densities, such as inside planets or in stars.

When exciting crystals such as silicon by an intense elliptically or circularly polarized light pulse (red), circularly polarized higher harmonics (green & blue) can be generated. Nicolas Tancogne-Dejean + Joerg M. Harms, MPSD

Scientists at the MPSD and CFEL have demonstrated the possibility of using a new knob to control and optimize the generation of high-order harmonics in bulk materials, one of the most important physical processes for generating high-energy photons and for the ultrafast manipulation of information.

feed-image Feed Entries