Research on the water electrolyte: Empa researcher Ruben-Simon Kühnel connecting a test cell to the charger with the concentrated saline solution. Empa

Water could form the basis for future, particularly inexpensive rechargeable batteries. Empa researchers have succeeded in doubling the electrochemical stability of water with a special saline solution. This takes us one step closer to using the technology commercially. In the quest to find safe, low-cost batteries for the future, eventually we have to ask ourselves a question: Why not simply use water as an electrolyte? 

Photographic images of tooth enamel samples in their initial state, after discoloration and after cleaning. The samples were cleaned with a toothpaste containing cellulose. Fraunhofer IMWS

Microplastics are still used in personal care products, although the environmental impact is well known. Tiny plastic particles from peelings and other skincare products enter the sea and ultimately our food chain via waste-water systems. In a research project, the Fraunhofer Institute for Microstructure of Materials and Systems IMWS and its partners have tested materials that can replace microplastics in cosmetic products and are biodegradable.

Illustration of a hypothetical device for studying the quantum Hall effect in 4D systems. Two 2D Hall bars (left/right) - the geometry used by Klaus von Klitzing for the first measurement of the 2D quantum Hall effect - are combined in orthogonal subspaces to form a 4D quantum Hall system (center). This 4D sample is depicted by encoding the fourth dimension in the colour of a surface in three spatial dimensions with red depicting positive values and blue negative ones. (Graphic: LMU/MPQ)

Researchers from LMU/MPQ implement a dynamical version of the 4D quantum Hall effect with ultracold atoms in an optical superlattice potential. In literature, the potential existence of extra dimensions was discussed in Edwin Abbott’s satirical novel “Flatland: A Romance of Many Dimensions” (1884), portraying the Victorian society in 19th century England as a hierarchical two-dimensional world, incapable of realizing its narrow-mindedness due to its lower-dimensional nature. In physics, on the other hand, the possibility that our universe comprises more than three spatial dimensions was first proposed in the wake of Albert Einstein’s theory of general relativity in the 1920s.

Weihnachtsbild 2017

 

The Nanobay team thanks everyone for the pleasant cooperation in 2017.
We wish you a Merry Christmas and a prosperous new year!

 

Types of pairing of two fermions. Figure: Puneet Murthy

Fermions in flatland pair up at very high temperatures: Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. The findings from the field of quantum physics may hold important clues to intriguing phenomena of superconductivity. The results were published in Science magazine.

Three-dimensional structure of a nanobody. Tino Pleiner and Sergei Trakhanov / MPI for Biophysical Chemistry

Antibodies are indispensable in biological research and medical diagnostics. However, their production is time-consuming, expensive, and requires the use of many animals. Scientists at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen, Germany, have now developed so-called secondary nanobodies that can replace the most-used antibodies and may drastically reduce the number of animals in antibody production. This is possible because the secondary nanobodies can be produced in large scale by bacteria. Moreover, the secondary nanobodies outperform their traditional antibody counterparts in key cell-biological applications.

A chip with a Coulomb blockade thermometer on it is prepared for experiments at extremely low temperatures. (University of Basel, Department of Physics)

Physicists at the University of Basel have succeeded in cooling a nanoelectronic chip to a temperature lower than 3 millikelvin. The scientists from the Department of Physics and the Swiss Nanoscience Institute set this record in collaboration with colleagues from Germany and Finland. They used magnetic cooling to cool the electrical connections as well as the chip itself. The results were published in the journal Applied Physics Letters. Even scientists like to compete for records, which is why numerous working groups worldwide are using high-tech refrigerators to reach temperatures as close to absolute zero as possible. Absolute zero is 0 kelvin or -273.15°C. Physicists aim to cool their equipment to as close to absolute zero as possible, because these extremely low temperatures offer the ideal conditions for quantum experiments and allow entirely new physical phenomena to be examined.

Red algae move towards the light and excrete chains of sugar molecules. By means of time-variable light patterns, the researchers obtain customized templates from these long, fine polymer threads, which they use for functional ceramics. (Photo: v. Opdenbosch/TUM)

Biofilms are generally seen as a problem to be eradicated due to the hazards they pose for humans and materials. However, these communities of algae, fungi, or bacteria possess interesting properties both from a scientific and a technical standpoint. A team from the Technical University of Munich (TUM) describes processes from the field of biology that utilize biofilms as ‘construction workers’ to create structural templates for new materials that possess the properties of natural materials. In the past, this was only possible to a limited extent.

Superimposing the ten structures with the least energy shows nicely which structure the hIAPP molecule prefers in a membrane environment. Image: Diana Rodriguez Camargo / TUM

When proteins misfold, accumulate and clump in insulin-producing cells in the pancreas, they can kill these cells. Now, researchers at the Technical University of Munich (TUM), the University of Michigan and the Helmholtz-Zentrum Muenchen have obtained a structural snapshot of these proteins when they are most toxic, detailing them down to an atomic level. The researchers hope this kind of detail can help in the search for drugs to target the incorrectly folding proteins.

Quantum error correction protocols detect and correct processing errors in trapped-ion quantum computers. IQOQI Innsbruck/Harald Ritsch

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors. In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means they need to consist of a considerably higher number of quantum bits. Second, they have to be capable of processing errors.

Image 1: This laser cutting head with diamond optics features built-in water cooling and shielding gas supply; diamond lenses reduce its weight by 90%. © Fraunhofer ILT, Aachen, Germany.

San Francisco's Photonics West, the world's premier optics and photonics trade fair, aims to bring together science and industry once again in 2018. Fraunhofer Institute for Laser Technology ILT will be putting on an effective demonstration of how to converge the two. The Aachen-based company's booth in the German Pavilion is primed to showcase cutting-edge technology, such as a 90% lighter laser cutting head and a laser platform for space applications. Photonics experts from around the world will make their annual pilgrimage to San Francisco in late January.

Pharmaceutical PhD student Julia Ernst with inhalers of a nanoparticle suspension. Jena researchers are developing an efficient method for treating often deadly respiratory infections. (Photo: Jan-Peter Kasper/FSU)

Scientists from Medicine and Pharmacy of the Friedrich Schiller University Jena, Germany fight Mucoviscidosis with Nanoparticles. Around one in 3,300 children in Germany is born with Mucoviscidosis. A characteristic of this illness is that one channel albumen on the cell surface is disturbed by mutations. Thus, the amount of water of different secretions in the body is reduced which creates a tough mucus. As a consequence, inner organs malfunction. Moreover, the mucus blocks the airways. Thus, the self regulatory function of the lung is disturbed, the mucus is colonized by bacteria and chronic infections follow.

International MicroNanoConference 2017

The International MicroNanoConference 2017 was held at the Beurs van Berlage in the very heart of Amsterdam. From Tuesday 12th Dec. to Wednesday 13th Dec. Nanobay participated in the ROCKET booth, presenting some of the projecs and collaborations we are involved in.

Schematic diagram of the “toolbox system” of the NRPS enzymes for the production of new active ingredients. Fragments from natural systems (green, magenta, blue) are reassembled in a new order (centre) and then produce a natural product which has not formed like this in nature before (right). (c) Goethe University

Microorganisms often produce natural products in a step-by-step manner similar to an assembly line. Examples of such enzymes are non-ribosomal peptide synthetases (NRPS). Researchers at Goethe University Frankfurt have now succeeded in designing these enzymes in such a way that they can produce completely new natural products. Many important therapeutics, such as antibiotics or immunosuppressant and anti-cancer drugs, are derived from microorganisms.

Sketch of an optimized optical antenna: A cavity is located inside; the electrical fields during operation are coded by the colour scale. Current patterns are represented by green arrows. Picture: Thorsten Feichtner

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network. Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator.

Sketch of an optimized optical antenna: A cavity is located inside; the electrical fields during operation are coded by the colour scale. Current patterns are represented by green arrows. Picture: Thorsten Feichtner

Targeted creation and control of photons: This should succeed thanks to a new design for optical antennas developed by Würzburg scientists. Atoms and molecules can be made to emit light particles (photons). However, without external intervention this process is inefficient and undirected. If it was possible to influence the process of photon creation fundamentally in terms of efficiency and emission direction, new technical possibilities would be opened up such as tiny, multifunctional light pixels that could be used to build three-dimensional displays or reliable single-photon sources for quantum computers or optical microscopes to map individual molecules.