A transistor is similar to a switch, which controls the flow of an electric current, but it doesn’t have any mechanical parts nor requires human interaction. A transistor is made out of N-type and P-type semiconductors, such as Silicon, Phosphorous and Boron. The N-type semiconductors are in contact on one side with the Source and on the other side Drain. The P-type semiconductors sit between the N-type semiconductors. To transfer the electrons from Source to Drain, a Gate contacts both N and P type semiconductors. By applying Voltage to the Gate, the electrons flow from the N-type semiconductors at either side, to the P-Type semiconductors and start accumulating there, creating a conductive channel from Source to Drain.

According to Moore’s Law, a transistor nowadays may not be bigger than 10nanometers wide. Transistors can be applied in mobiles, computers, TV’s and many more electronic devices.

  • A Transistor of Graphene Nanoribbons

    The microscopic ribbons lie criss-crossed on the gold substrate. Empa

    Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications." Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the nanoelectronics of the future:

  • Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

    Artistic rendering of a light-emitting transistor with carbon nanotubes between two mirrors for electrical generation of polaritons. Image credit: Dr Yuriy Zakharko, co-author

    Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University (Germany) and the University of St Andrews (Scotland) used light-emitting and extremely stable transistors to reach strong light-matter coupling and create exciton-polaritons. These particles may pave the way for new light sources, so-called electrically pumped polariton lasers, that could be manufactured with carbon nanotubes.

  • Faster, More Precise, More Stable: Study Optimizes Graphene Growth

    Visible to the naked eye: A wafer-thin graphene flake obtained via chemical vapor deposition. The red coloration of the copper substrate appears when the sample is heated in air. (Photo: J. Kraus/ TUM)

    Each atomic layer thin, tear-resistant, and stable. Graphene is seen as the material of the future. It is ideal for e.g. producing ultra-light electronics or highly stable mechanical components. But the wafer-thin carbon layers are difficult to produce. At the Technical University of Munich (TUM), Jürgen Kraus has manufactured self-supporting graphene membranes, and at the same time systematically investigated and optimized the growth of the graphene crystals. He was awarded the Evonik Research Prize for his work.

  • Germanium outperforms silicon in energy efficient transistors with n- und p- conduction

    Energy-efficient germanium nanowire transistor. Transmission electron microscope image of cross section.  NaMLab gGmbH

    NaMLab and cfaed reached an important breakthrough in the development of energy-efficient electronic circuits using transistors based on germanium

    A team of scientists from the Nanoelectronic Materials Laboratory (NaMLab gGmbH) and the Cluster of Excellence Center for Advancing Electronics Dresden (cfaed) at the Dresden University of Technology have demonstrated the world-wide first transistor based on germanium that can be programmed between electron- (n) and hole- (p) conduction.

  • IHP presents the fastest silicon-based transistor in the world

    The cross section shows a SiGe HBT of the latest generation, recorded by a TEM. The measurement curves are used to determine the transit frequency and the maximum oscillation frequency. © IHP 2016

    Frankfurt (Oder)/San Francisco. Scientist Dr. Bernd Heinemann of IHP – Innovations for High Performance Microelectronics will present results on silicon-germanium heterobipolar transistors (SiGe HBTs) developed in Frankfurt (Oder) on the “International Electron Devices Meeting” (IEDM) in San Francisco. His contribution titled “SiGe HBT with fT/fmax of 505 GHz/720 GHz “ presents speed parameters that set new standards for silicon transistors. “To present at IEDM is a valuable conclusion of the project ‘DOTSEVEN’, funded by the European Union. Together with Infineon and twelve other project partners from a total of six countries, the four-year project focused on developing SiGe HBTs with a maximum oscillation frequency, which is also referred to as fmax, of 0.7 THz,” says Dr. Bernd Heinemann, project manager at IHP.

  • Mapping electromagnetic waveforms

    Mapping electromagnetic waveforms | A three-dimensional depiction of the spatial variation of the optical electromagnetic field around a microantenna following excitation with terahertz pulse. The optical field is mapped with the aid of electron pulses. Graphic: Dr. Peter Baum

    Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second. With this new microscope researchers will be able to obtain fundamental insights of how transistors or optoelectronic switches operate at the microscopic level.

  • Microprocessors based on a layer of just three atoms

    Overview of the entire chip. AC = Accumulator, internal buffer; PC = Program Counter, points at the next instruction to be executed; IR = Instruction Register,  used to buffer data- and instruction-bits received from the external memory; CU = Control Unit, orchestrates the other units according to the instruction to be executed; OR = Output Register, memory used to buffer output-data; ALU = Arithmetic Logic Unit, does the actual calculations.

    Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

    Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a few layers of atoms. Graphene is the best-known 2D material. Molybdenum disulphide (a layer consisting of molybdenum and sulphur atoms that is three-atoms thick) also falls in this category, although, unlike graphene, it has semiconductor properties. With his team, Dr Thomas Mueller from the Photonics Institute at TU Wien is conducting research into 2D materials, viewing them as a promising alternative for the future production of microprocessors and other integrated circuits.

  • New High-Voltage Silicon Carbide Inverter Enables Stabilization of Medium-Voltage Grids

    Single-phase 20 kV power stack with 15 kV silicon carbide power MOSFETs, drivers and part of the DC link capacitors.  © Fraunhofer ISE

    Researchers at the Fraunhofer Institute for Solar Energy Systems ISE developed and successfully put into operation an inverter for direct feed-in to the 10 kV medium-voltage grid. The inverter contains high-voltage silicon carbide (SiC) transistors which allow for coupling to the medium voltage grid without requiring an additional transformer. The three-phase inverter can be used to regulate reactive power as well as to actively filter undesirable harmonics in the electricity grid. Thus, it actively contributes to the stabilization of future power grids with a large share of renewables.

  • Saving Energy by Taking a Close Look Inside Transistors

    Physicist Martin Hauck fits a silicon carbide transistor into the measuring apparatus: researchers at FAU have discovered a method for finding defects at the interfaces of switches. FAU/Michael Krieger, Martin Hauck


    Transistors are needed wherever current flows, and they are an indispensable component of virtually all electronic switches. In the field of power electronics, transistors are used to switch large currents. However, one side-effect is that the components heat up and energy is lost as a result. One way of combating this and potentially making considerable savings is to use energy-efficient transistors. Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. This will speed up the process of developing more energy-efficient transistors in future. They have now published their findings in the renowned journal Communications Physics.*

  • The TU Ilmenau develops tomorrow’s chip technology today

    Photo: TU Ilmenau

    The Technische Universität Ilmenau has successfully completed a European research project, in which new technologies for the development of the electronic chips of the future were developed. In this 18 million euro project, led by Professor Ivo W. Rangelow in Ilmenau, 16 industrial and scientific partners explored the technological processes behind the production of transistors, whose smallest components are only two nanometres in width, which is half a million times smaller than a millimetre. The results of the project enable the mass production of a new generation of electronics, including incredibly energy-efficient and high-performance computers, smartphones and tables, to name only a few examples.