Solar Energy

Solar energy is one of the industries where nanotechnology's contribution is expected to be vital. For some years already researchers all around the world have been working towards a more efficient collection and storage of solar energy.

  • »SolACES« – Farewell after nine years on the ISS

    The SOLAR research mission successfully supplied measurement data on the solar spectrum for a period of nine years – with the help of Fraunhofer IPM’s »SolACES« EUV spectrometer. ESA – European Space Agency

    SolACES, the solar spectrometer developed by Fraunhofer IPM and installed on the ISS, supplied unique measurement data on solar activity for nine years. As the SOLAR research mission has come to an end, the successful experiment was ceremoniously deactivated on 15 February 2017 at the B.USOC control centre in Brussels. The SolACES solar spectrometer flew to the International Space Station in February 2008 as part of the SOLAR research mission. Its planned lifetime was one and a half years. Yet SolACES reliably supplied data on the sun’s extreme ultraviolet (EUV) spectrum for nine years. Together with other measurement data, the SolACES data today forms the basis for modern climate models.

  • 30.2 Percent Efficiency – New Record for Silicon-based Multi-junction Solar Cell

    Wafer-bonded III-V / Si multi-junction solar cell with 30.2 percent efficiency. ©Fraunhofer ISE/A. Wekkeli

    Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with the Austrian company EV Group (EVG) have successfully manufactured a silicon-based multi-junction solar cell with two contacts and an efficiency exceeding the theoretical limit of silicon solar cells. For this achievement, the researchers used a “direct wafer bonding” process to transfer a few micrometers of III-V semiconductor material to silicon, a well-known process in the microelectronics industry. After plasma activation, the subcell surfaces are bonded together in vacuum by applying pressure. The atoms on the surface of the III-V subcell form bonds with the silicon atoms, creating a monolithic device.

  • Adhesive Process Developed for Shingle Cell Technology

    Pilot process to apply an electrically conductive adhesive to shingled cells carried out on the industrial stringer in the Module-TEC of Fraunhofer ISE. (C) Fraunhofer ISE

    The Fraunhofer Institute for Solar Energy Systems ISE in Freiburg has developed a special adhesive process to interconnect silicon solar cells for the industrial production of shingle modules. The market demand for shingle modules is rising rapidly due to their high efficiency and pleasing aesthetics. The cell stringer at Fraunhofer ISE is unique in Germany. It offers a wide range of possibilities for the prototype production of this highly efficient module.

  • Aus zwei mach eins: Wie aus grünem Licht blaues wird

    Aus zwei mach eins Wie aus grünem Licht blaues wird | Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) Abbildung: Michael Oldenburg

    Die Hochkonversion von Photonen ermöglicht, Licht effizienter zu nutzen: Zwei Lichtteilchen werden in ein Lichtteilchen mit höherer Energie umgewandelt. Forscher am KIT haben nun erstmals gezeigt, dass innere Grenzflächen zwischen oberflächengebundenen metallorganischen Gerüstverbindungen (SURMOFs) sich optimal dafür eignen – sie haben aus grünem Licht blaues Licht gemacht. Dieses Ergebnis wurde nun in der Fachzeitschrift Advanced Materials vorgestellt und eröffnet neue Möglichkeiten für optoelektronische Anwendungen wie Solarzellen oder Leuchtdioden. (DOI: 10.1002/adma.201601718)

  • CalLab PV Modules Increases Measurement Precision to a Record 1.3 Percent

    Test stand developed at Fraunhofer ISE for measuring bifacial PV modules. Fraunhofer ISE

    The calibration laboratory at the Fraunhofer Institute for Solar Energy Systems ISE has achieved a best value: Photovoltaic modules can now be calibrated with an even higher measurement precision of 1.3 percent. Repeatability lies at 0.4 percent. Measurement precision is a decisive factor for quality assurance in the module production and for investments in PV plants. For a volume of 10 MW, for example, each percentage point increase in measurement precision corresponds to a monetary value of about 60,000 euros. “Maximum measurement precision is not just an academic exercise, rather it greatly helps gain the confidence of investors,” says Dr. Harry Wirth, division director of Photovoltaic Modules, Systems and Reliability. Module manufacturers have to maintain their quality assurance at a high level daily and guarantee their sold output. Power plant operators must know the module power as exact as possible in order to minimize yield uncertainty.

  • Cooling buildings with solar heat

    Since 2001 in operation: Solar-powered, open, desiccant and evaporative cooling (DEC) of seminar rooms at the Southern Upper Rhine IHK, Freiburg.  © Fraunhofer ISE

    The cooling demand in buildings is particularly high when the sun shines intensely. Consequently, with solar air conditioning the heating demand and supply are usually consistent with each other. Closed chillers and open sorption methods for direct air conditioning ensure a comfortable indoor climate. The recently published BINE Themeninfo brochure entitled "Cooling with solar heat" presents concepts and technologies for air conditioning buildings.

  • Dünnschicht-Solarzellen: Wie Defekte in CIGSe-Zellen entstehen und verschwinden

    Kupferanteil spielt entscheidende Rolle

    Eine internationale Kollaboration aus deutschen, israelischen und britischen Teams hat die Abscheidung von einzelnen Chalkopyrit-Dünnschichten untersucht. An der Röntgenquelle BESSY II des Helmholtz-Zentrums Berlin konnten sie beobachten, wann sich während der Deposition bestimmte Defekte bilden und unter welchen Umständen sie ausheilen. Die Ergebnisse geben Hinweise für die Optimierung der Herstellungsprozesse und sind nun in „Energy & Environmental Science“ publiziert.

  • Flexibles Halbleitermaterial für Elektronik, Solartechnologie und Photokatalyse

    Flexibler Halbleiter aus Zinn, Iod und Phosphor (SnIP) mit Doppelhelix-Struktur Bild: Andreas Battenberg / TUM

    Die Doppelhelix hat als stabile und flexible Struktur des Erbguts das Leben auf der Erde erst möglich gemacht. Nun hat ein Team der Technischen Universität München (TUM) eine Doppelhelix-Struktur auch in einem anorganischen Material entdeckt. Das Material aus Zinn, Iod und Phosphor ist ein Halbleiter, besitzt außergewöhnliche optische und elektronische Eigenschaften und ist mechanisch hoch flexibel.

  • Fraunhofer ISE and NREL collaborate on Hydrogen and Fuel Cell Research

    Left to right (standing): Bryan Pivovar, NREL; Sunita Satyapal, U.S. DOE; Helge Pols, BMVi; Klaus Bonhoff, NOW. Left to right (sitting): Keith Wipke, NREL, Christopher Hebling, Fraunhofer ISE. ©NREL

    The two largest research organizations for renewable energy research in the world, the Fraunhofer Institute for Solar Energy Systems ISE in Germany and the U.S. Department of Energy's National Renewable Energy Laboratory NREL have signed a Memorandum of Understanding (MOU) for close collaboration on hydrogen and fuel cell technologies research. The official launch took place on Monday, October 10th at the “f-cell / World of Energy Solutions” conference in Stuttgart.

  • Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

    New materials enable high speed frequencies: Fraunhofer ISE develops resonant DC/DC converters with 2.5 MHz as demonstrator for aeronautical applications. ©Fraunhofer ISE

    The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

  • Going green with nanotechnology

    Reducing the environmental impact of organic solar cell production, building more efficient energy storage: Würzburg-based research institutes have provided for progress in the Bavarian project association UMWELTnanoTECH. Below, we will present their outstanding results.

    Nanotechnology offers many chances to benefit the environment and health. It can be applied to save raw materials and energy, develop enhanced solar cells and more efficient rechargeable batteries and replace harmful substances with eco-compatible solutions.

  • Hamburger Wissenschaftler entwickeln Nanomaterialien für die Umwandlung von Wärme in Strom

    Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Hamburg (TUHH), des Helmholtz-Zentrum Geesthacht (HZG) in Kooperation mit der kanadischen University of Alberta haben ein neuartiges optisches Nanomaterial hergestellt, das es ermöglicht, Wärme direkt in Strahlung und danach mit hoher Effizienz in elektrische Energie umzuwandeln. Das neu entwickelte Nanomaterial soll einen wichtigen Beitrag leisten, moderne Industriegesellschaften auf ressourcenschonenden Energieeinsatz umzustellen. Publiziert wird die Arbeit am 6. Juni 2016 in „Nature Communications“, einer der weltweit wichtigsten Fachzeit-schriften für fachübergreifende, wissenschaftliche Forschungsarbeiten.

  • Heating and cooling with environmental energy

    The technical centre “Gebäude G” at the Biberach University of Applied Sciences. Different types of TABS are built-in here. The building is used for research and teaching.   © Hochschule Biberach. Institut für Gebäude- und Energiesysteme, Stefan Sättele

    Environmental energy provides an efficient way to supply energy to non-residential buildings such as office and administration buildings, educational and recreational facilities as well as industrial sheds. The buildings can be efficiently heated and cooled using the combined use of thermo-active building systems and heat pumps. Across 24 pages, the new BINE-Themeninfo brochure entitled "Efficiently heating & cooling non-residential buildings" (II/2016) presents low-exergy concepts for these buildings.

  • Meilenstein in der gedruckten Photovoltaik-Technologie

    FAU-Wissenschaftler erforschen effiziente und nachhaltige organische Solarzellen als Alternative zu herkömmlichen Siliziumzellen

  • Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

    The multicrystalline world record solar cell made of n-type HPM silicon with an area of 2 cm x 2 cm. ©Fraunhofer ISE

    The potential of photovoltaics (PV) has not yet been exhausted. Both industry and research continue to work intensively on increasing the efficiency and reducing the costs of solar cells, the basic component of every PV power plant. Now researchers at Fraunhofer ISE have produced a multicrystalline silicon solar cell with 21.9 percent efficiency, successfully bringing the world record back to Freiburg. Higher efficiencies and optimized processing steps are decisive for decreasing the cost of solar electricity even further. Both of these are an integral part of the photovoltaic research at the Fraunhofer Institute for Solar Energy Systems.

  • Nature knows how to do it – as does research, in principle

    Nature knows how to do it as does research in principle | The researchers make a distinction between three different basic approaches to artificial photosynthesis. However, due to its efficiency advant

    As part of the "LightChEC" research project at the University of Zurich, Empa scientists are working with other researchers on a novel method of artificial photosynthesis – photocatalysis, which uses a purely chemical process to split water into hydrogen and oxygen. Unlike other methods, it does not involve the electrolysis of water. However, the practical application of photocatalysis is still some way off.

  • New High-Voltage Silicon Carbide Inverter Enables Stabilization of Medium-Voltage Grids

    Single-phase 20 kV power stack with 15 kV silicon carbide power MOSFETs, drivers and part of the DC link capacitors.  © Fraunhofer ISE

    Researchers at the Fraunhofer Institute for Solar Energy Systems ISE developed and successfully put into operation an inverter for direct feed-in to the 10 kV medium-voltage grid. The inverter contains high-voltage silicon carbide (SiC) transistors which allow for coupling to the medium voltage grid without requiring an additional transformer. The three-phase inverter can be used to regulate reactive power as well as to actively filter undesirable harmonics in the electricity grid. Thus, it actively contributes to the stabilization of future power grids with a large share of renewables.

  • New Materials – New Test Requirements

    The workshop “PV Module Reliability“ at Frauhofer ISE focuses on the durability of different PV technologies, for example, bifacial modules. Fraunhofer ISE

    7th PV Module Reliability Workshop Sets on the Future of the Solar Energy Market

    On July 6-7, 2017 the Fraunhofer Institute for Solar Energy Systems ISE is hosting the 7th PV Module Reliability workshop. This year the workshop will be held at the Solar Info Center, which is in close proximity to the laboratories of Fraunhofer ISE in Freiburg. The location provides an ideal setting for technical tours and discussions. This year the workshop focuses on the reliability of PV modules and systems, and speakers from throughout the world will be presenting talks related to this theme.

  • Patented Nanostructure for Solar Cells: Rough Optics, Smooth Surface

    The nanostructure for capturing light is imprinted on silicon oxide (blue) and then "levelled" with titanium oxide (green). HZB

    Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

  • Photosynthese als Vorbild - Chemiker entwickeln künstliches Blatt

    Ohne Photosynthese kein Leben: Ständig stellen Pflanzen Zucker für die eigene Versorgung her. Der für Mensch und Tier notwendige Sauerstoff ist eigentlich nur ein Nebenprodukt. Doch noch immer sind die komplexen Vorgänge in den Blättern nicht vollständig verstanden. Dabei könnten sie wertvolle Hinweise für saubere Energiequellen und nachhaltige Energiespeicher liefern. In der renommierten Fachzeitschrift „Angewandte Chemie“ stellen die Ulmer Professoren Carsten Streb und Timo Jacob nun ein „künstliches Blatt“ vor, mit dem sich die Umwandlung von Wasser zu Sauerstoff nachvollziehen und eventuell optimieren lässt.