Plastics

  • 3D Printers to Produce Precisely Fitting Plastic Parts for Lightweight Construction

    The researchers use continuous fibres in their fibre-reinforced plastics. Credits: Koziel/TUK

    3D printers are becoming ever more important: they can be used to quickly produce the desired products. Researchers at Technische Universität Kaiserslautern are also working with this system: in order to optimize the printing result for plastics, they examine the conditions required during printing. In this context, the composition of the material also plays a role. With their fibre-reinforced plastic, they rely on fibres that are completely built into the plastic like a string. This is interesting, for example, for the lightweight construction of vehicles. They will present their work at the Hannover Messe from 1 to 5 April at the Rhineland-Palatinate research stand (Hall 2, Stand B40).

  • A Transparent and Thermally Stable Polyamide – 100 Percent Biobased

    From wood waste to high-performance polymers: Terpenes from turpentine are converted to bio-based, transparent and heat-stable polyamides under application of a new catalytic process. Fraunhofer IGB

    The natural substance 3-carene is a component of turpentine oil, a waste stream of the production of cellulose from wood. Up to now, this by-product has been incinerated for the most part. Fraunhofer researchers are using new catalytic processes to convert 3-carene into building blocks for biobased plastics. The new polyamides are not only transparent, but also have a high thermal stability.

  • CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass

    Picture 1: A matter of shape: the Fraunhofer CeGlaFlex project is developing very thin, malleable and transparent protective covers for OLEDs in the roll-to-roll process. © Fraunhofer FEP, Dresden, Germany.

    Only twice as thick as a strand of hair, or around 100 µm: that’s how thin the transparent, scratchproof and malleable ceramic layers of the future that are meant to protect portable electronics are. Since March 2017, the methods and process chains for producing this material have been in development at the Fraunhofer Institute for Laser Technology ILT as part of a three-year research project called CeGlaFlex. Mobile electronics, regardless of whether it is a cellular phone, tablet or blood pressure monitor, rely on the quality of their touch-screen displays. In keeping with the trend of individually shaped smart devices, they should be not only scratchproof, unbreakable and chemically stable, but also easy to mold.

  • Cold plasma: Get started with the Disc Jet

    The Disc Jet can also be used to process cavities.

    Plasmas are often found in the center of stars – on Earth, the electrically charged gas mixtures are a rare occurrence, such as in lightning discharges or aurora borealis lights. However, you can provide some help with high heat or high electrical voltages. Fraunhofer researchers have produced cold plasmas and used them for the surface treatment of temperature-sensitive materials. In doing so, recesses or undercuts were no longer a problem, thanks to a new technology – the Disc Jet can reach everywhere.

  • Flexible OLEDs glowing from first European open access pilot line

    Flexible OLED on plastic web. Fraunhofer FEP

    Fraunhofer FEP has extensive and long lasting expertise and know-how in operation of its R&D lines for manufacturing of OLED lighting devices. As one of the core team partners within the European pilot line project PI-SCALE Fraunhofer FEP presents first demonstrators of flexible OLED out from this project. The demonstrators represent results from first pilot line production within the PI-SCALE project at the IDW 23rd International Display Workshops in Fukuoka, Japan, from December 7 – 9, 2016 on 4th floor, booth no. 13.

  • FlexPLAS®Release Film – Release Agent Free Manufacture of FRP Components in Complex Hot Press Molds

    Removal of FlexPLAS® release film from a contaminant-free CFRP component after curing in the hot press. © Fraunhofer IFAM

    At the JEC 2018 fair in Paris (6-8 March) the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM will present for the first time the use of flexible FlexPLAS® release film in complex hot press molds. You are invited to visit us on the communal stand of CFK Valley in Hall 5 A, Stand E 58. The plasma-coated FlexPLAS® release film developed by Fraunhofer IFAM (Bremen and Stade) has already been successfully used for a number of years for the manufacture of contaminant-free fiber reinforced plastic (FRP) components.

  • High-performance Roll-to-Roll processing for flexible electronics

    Ultra-thin flexible Corning® Willow® Glass with a glass thickness of 100 μm © Fraunhofer FEP, Photographer: Jürgen Lösel

    Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics presents a roll of flexible thin glass, which is coated with highly conductive ITO continuously on 100 meters with roll-to-roll technology for the first time at FLEX 2017, from June 19 – 22, 2017 in Monterey, USA at booth no. 1004.

  • IfBB präsentiert aktuelle Zahlen zum Biokunststoffmarkt

    Aktuelle Fakten aus dem Biokunststoffsektor bietet die neue Ausgabe von „Biopolymers – facts and statistics“. IfBB

    (Hannover, 28.11.2016) Auch 2016 veröffentlicht das IfBB – Institut für Biokunststoffe und Bioverbundwerkstoffe wieder neue Daten zu Markt, Rohstoff- sowie Flächenbedarf von Biokunststoffen. Die Veröffentlichung enthält zudem viele weitere Informationen und steht ab 29. November kostenfrei zum Download zur Verfügung. Am 29. November erscheint die neue Auflage der IfBB-Broschüre „Biopolymers – facts and statistics“. Die Broschüre bietet einen schnellen und gut verständlichen Überblick der aktuellen marktrelevanten und technischen Fakten im Biokunststoffsektor: Vergleichende Marktzahlen zu einzelnen Werkstoffen, Regionen, Anwendungen, Prozessrouten, Agrarflächenbedarf oder Ressourcen- und Wasserverbrauch, Produktionskapazitäten, geographische Verteilung, Anwendungen, usw. sind übersichtlich in Grafiken und Diagrammen aufbereitet. Die Broschüre ist kostenlos erhältlich.

  • Invisible tags: Physicists at TU Dresden Write, Read and Erase Using Light

    A luminescent tag, contactless printed onto a plastic foil. The light emitting layer is thinner than a human hair. The imprint can be erased and replaced by another pattern. M. Gmelch and H. Thomas, TU Dresden

    A team of physicists headed by Prof. Sebastian Reineke of TU Dresden developed a new method of storing information in fully transparent plastic foils. Their innovative idea was now published in the renowned online journal “Science Advances”. Prof. Reineke and his LEXOS team work with simple plastic foils with a thickness of less than 50 µm, which is thinner than a human hair. In these transparent plastic foils, they introduce organic luminescent molecules. In the beginning, these molecules are in an inactive, dark state. By locally using ultraviolet irradiation, it is possible to turn this dark state into an active, luminescent one.

  • Laser Processes for Multi-Functional Composites

    Trimming of a hybrid car roof bow made of glass and carbon-fiber reinforced plastic. Fraunhofer ILT, Aachen, Germany.

    Since composites combine the advantages of dissimilar materials, they can be used to exploit great potential in lightweight construction. At JEC World 2019 in Paris in March, scientists from the Fraunhofer Institute for Laser Technology ILT will present a broad range of laser-based technologies for the efficient production and processing of composite materials. Visitors to the joint booth of the Aachen Center for Integrative Lightweight Construction AZL, Hall 5A/D17, will gain insight into joining and cutting processes as well as surface structuring.

  • Lichtfernbedienung für die Reparatur von Materialien

    Durch Licht-Bestrahlung kann sich die intelligente Kunststoffbeschichtung gezielt selbst reparieren. Bild: Stefan Hecht

    Forscherteam unter Leitung der HU entwickelt intelligente Kunststoffbeschichtung, die sich durch Licht-Bestrahlung gezielt repariert. Muss ein stark beschädigter Alltagsgegenstand ausgewechselt werden, ist das zumeist umweltbelastend und teuer. Um dies in Zukunft zu vermeiden, arbeiten Forscher seit Jahren an der Entwicklung neuer Materialien, die Kratzer oder Risse reparieren können. Ein Team unter Leitung von Forschern der Humboldt-Universität zu Berlin (HU) hat nun erstmals Kunststoffbeschichtungen entwickelt, die mit Hilfe von Licht gezielt Beschädigungen heilen können. Die Ergebnisse ihrer Studie stellen sie in der Nature Communications vor.

  • Light and Strong: Hybrid Lightweight Components Made of Steel and Fiber-reinforced Plastics

    Part of a hybrid rocker panel locally functionalized using laser-assisted tape placement. Foto: Fraunhofer IPT

    In recent years there has been a sharp increase in demand for lighter components for applications in mobility and transport in response to the need to save weight, and therefore energy and resources. Hybrid components made of steel, locally functionalized with fiber-reinforced plastics combine high mechanical performance with low weight. Demand for manufacturing processes conducive to cost-effective mass-production is burgeoning.

  • LZH optimizes laser-based CFRP reworking for the aircraft industry

    Repair preparation of a CFRP aircraft component through layer-by-layer laser removal of the damaged material areas. Foto: LZH

    To be able to rework aircraft components made of carbon-fiber reinforced plastics (CFRP) more efficiently in the future, the Laser Zentrum Hannover e.V. (LZH) has started the joint research project ReWork together with the INVENT GmbH, OWITA GmbH und Precitec Optronik GmbH. The aim of the project is to develop a reliable process for thin-walled and complex CFRP components. Today, many aircraft components are made of the lightweight material CFRP. Advantages of this material are the low weight and the high stability. The processing of this material, however, is still difficult. Therefore, in order to eliminate production- and operation-related defects in a faster and more cost-efficient way, the aircraft industry requires a reliable solution.

  • Making lightweight construction suitable for series production

    On the way to series production: 3D CFRP processing. Photo: LZH

    More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

  • Mikroben fertigen Bioplastik aus Rauchgas und Strom

    Der Biologe Johannes Eberhard Reiner vom KIT mit den Reaktoren zur mikrobiellen Elektrosynthese. (Foto: Constanze Zacharias)

    Ein ressourcenschonendes und kostengünstiges Verfahren zur Herstellung von Bioplastik entwickeln Forscher am Karlsruher Institut für Technologie (KIT): In dem vom Bundesforschungsministerium geförderten Projekt „BioElectroPlast“ setzen sie Mikroorganismen ein, die aus Rauchgas, Luft sowie Strom aus erneuerbaren Quellen das Polymer Polyhydroxybuttersäure produzieren. Der so optimierte Prozess der mikrobiellen Elektrosynthese eröffnet für die Zukunft weitere Perspektiven, etwa zur Herstellung von Biokraftstoffen oder zur Speicherung von Strom aus regenerativen Quellen in Form chemischer Produkte.

  • New laser processes for innovative lightweight design

    Laser-remote cut metallic foam made of aluminum (left) and steel (right). © Fraunhofer IWS Dresden

    Lightweight design is one of the mostly progressive research areas involved in accomplishing the transition from fossil fuels to renewable energy sources, as well as the reduction of CO2 emissions. Innovative materials, such as carbon or glass fiber reinforced plastics (CFRP/GFRP), as well as metal foams, contribute to the successful implementation of the target set by the Federal Government. The Fraunhofer IWS has been researching in this field for many years to provide promising and affordable solutions for our industrial and research partners. One of these solutions is the laser-remote cutting technique.

  • No sugar coating, but sweet nonetheless

    In the upper part of the image you can see an enlarged picture of the microprobe manufactured in Freiburg for stimulating and simultaneously gathering data. Below there is a cross section oft he coating made from the polymer PEDOT that has stored an anti-inflammatory medicine that can be released by applying negative voltage.  Source: Christian Böhler, Maria Asplund

    First long-term stabile brain implant developed based on an anti-inflammatory coating.

    Complex neurotechnological devices are required to directly select and influence brain waves inside the skull’s interior. Although it has become relatively easy to implement the devices, researchers are still faced with challenges when trying to keep them running properly in living organisms over time. But that could be changing now, thanks to a new method from Freiburg. A research team was able to create a microprobe that grows into the neural tissue without inflammation and with the help of a medicinal coating.

  • PolyPhotonics project starts: Fraunhofer HHI and partners develop market-ready polymer chips

    Fantastic plastic data outlet of the future: Optic transceiver made mostly from plastic. © Fraunhofer HHI

    "Great in Optics – Small in Size!" The growing core of the “PolyPhotonics” Innovation Initiative will take this motto to the global communications market. The project is part of the “Regional Enterprise Initiative” of the German Federal Ministry of Research. The consortium develops the value chain for the creation of a new technology platform. The Fraunhofer Heinrich Hertz Institute HHI coordinates the project.

  • Precise laser drilling of CFRP components in large quantities

    Laser-drilled holes in an aircraft component made of CFRP.

    In a new joint research project, four enterprises and the Laser Zentrum Hannover e.V. (LZH) aim at further developing the laser drilling of composites for series production in the aircraft industry. Their focus is on designing an efficient system and process technique that meets the demands of aviation. Composites, such as carbon fiber reinforced plastics (CFRP), have a high potential for lightweight construction and are therefore already now widely used in aviation. These materials, however, have extraordinary properties, such as a low weight and high stability at the same time, but processing composites is quite complex. Here, mechanical processes lead to high tool wear and thus to quality problems.

  • Safe energy transport made easy – Adaptive processing of complex control data

    Thermoplastic fiber-reinforced pipe.  Source: Fraunhofer IPT

    Pipes for the oil and gas industry which are used to transport raw materials from the seabed to the surface, have to meet specific requirements. They are highly relevant to security because every single pipe must be able to fully withstand the enormous loads of deep-sea production. Hence, controlling the manufacturing process of wound thermoplastic fiber-reinforced pipes is extremely complex. The EU research project “ambliFibre”, consisting of thirteen international partners led by the Aachen-based Fraunhofer Institute for Production Technology IPT, focuses on the manufacturing of these pipesand aims to develop an Industrie-4.0-compliant, highly flexible and reliable control system.