Measured in the nanoscale, nanomaterials are materials that have at least one external dimension measuring 100 nanometers or less or internal structures measuring 100 nm or less. These may be present in the form of particles, tubes, rods, fibers or other geometries.

Examples of nanomaterials: Titanium dioxide is used as a white color pigment, for hydrophilic and antimicrobial surface coatings and for self-cleaning surface coatings.

Graphene another popular category of nanomaterials, is used for surface treatments, the new field of spintronics and as raw material for the fabrication of Carbon nanotubes and other carbon-based nanomaterials

  • A better understanding of nanomaterials

     Petascale Simulations of Self-Healing Nanomaterials | by Argonne National Laboratory.

    In the past six years, the National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) intensively studied the development, use, behaviour and degradation of engineered nanomaterials, including their impact on humans and on the environment.

    Twenty-three research projects on biomedicine, the environment, energy, construction materials and food demonstrated the enormous potential of engineered nanoparticles for numerous applications in industry and medicine. Thanks to these projects we now know a great deal more about the risks associated with nanomaterials and are therefore able to more accurately determine where and how they can be safely used.

  • Applications of Graphene

    Application of Graphene

    In order to get introduced to Graphene, a good point of start would be Graphite. Graphite is a naturally-occurring form of crystalline carbon. It is a native element mineral found in metamorphic and igneous rocks. Regarding its composition, Graphite is a stack of carbon-atom layers.

  • Batterie und Elektronik aus dem Tintenstrahldrucker

    Batterie und Elektronik aus dem Tintenstrahldrucker | Schaltkreise aus dem Tintenstrahldrucker sind so flexibel wie das Papier auf dem sie gedruckt sind.

    Der südkoreanischer Forscher Sang-Young Lee hat einen handelsüblichen Drucker so umgebaut, dass er Energiespeicher und einfache Schaltkreise druckt. Ziel dabei ist, tragbare Technik unsichtbar in beliebigen Bauformen zu integrieren.

    Unter einem Tisch im Labor von Sang-Young Lee befindet sich ein normaler, etwas abgenutzter Tintenstrahldrucker, den er so modifiziert hat, dass er elektronische Schaltkreise und Superkondensatoren produziert. Dazu entleert Lee die Tintenbehälter und befüllt sie mit speziellen Batterie-Materialien und leitfähiger Tinte. Auf behandeltem Papier druckt das Gerät dann flexible, haltbare Superkondensatoren und einfache Schaltkreis-Komponenten, zum Beispiel in Form einer hochaufgelösten Karte der Republik Korea, Blumen oder Logos.

  • Better Contrast Agents Based on Nanoparticles

    Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging. This new type of nanoparticles produce around ten times more contrast than common contrast agents and are responsive to specific environments. The journal Chemical Communications has published these results.

  • Black Nanoparticles Slow the Growth of Tumors

    Infrared thermal images - Right side: Elevated tumor (yellow) temperature in mice after laser irradiation in with OMV-melanin treated mice. Left side: mouse treated with OMVs without melanin. Vipul Gujrati / Technical University of Munich

    The dark skin pigment melanin protects us from the sun’s damaging rays by absorbing light energy and converting it to heat. This could make it a very effective tool in tumor diagnosis and treatment, as demonstrated by a team from the Technical University of Munich (TUM) and Helmholtz Zentrum München. The scientists managed to create melanin-loaded cell membrane derived nanoparticles, which improved tumor imaging in an animal model while also slowing the growth of the tumor.

  • Breakthrough in materials science: Kiel research team can bond metals with nearly all surfaces

    The targeted etching process of “nanoscale-sculpturing” roughens the upper layer of metal (here aluminium, 20 µm = 0.02 mm), thereby creating a 3D-structure with tiny hooks.   Melike Baytekin‐Gerngroß

    How metals can be used depends particularly on the characteristics of their surfaces. A research team at Kiel University has discovered how they can change the surface properties without affecting the mechanical stability of the metals or changing the metal characteristics themselves. This fundamentally new method is based on using an electro-chemical etching process, in which the uppermost layer of a metal is roughened on a micrometer scale in a tightly-controlled manner. Through this “nanoscale-sculpturing” process, metals such as aluminium, titanium, or zinc can permanently be joined with nearly all other materials, become water-repellent, or improve their biocompatibility.

  • Carbon Nanotubes Couple Light and Matter

    The formation of exciton-polaritons through strong light-matter coupling is a promising strategy for producing electrically pumped carbon-based lasers. Scientists from Heidelberg University and the University of St Andrews (Scotland) have now, for the first time, demonstrated this strong light-matter coupling in semiconducting carbon nanotubes. Figure: Arko Graf (Heidelberg University)

    Scientists from Heidelberg and St Andrews work on the basics of new light sources from organic semiconductors. With their research on nanomaterials for optoelectronics, scientists from Heidelberg University and the University of St Andrews (Scotland) have succeeded for the first time to demonstrate a strong interaction of light and matter in semiconducting carbon nanotubes. Such strong light-matter coupling is an important step towards realising new light sources, such as electrically pumped lasers based on organic semiconductors. They would be, amongst other things, important for applications in telecommunications. These results are the outcome of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte Gather (St Andrews), and have been published in “Nature Communications”.

  • Electrical Fields Drive Nano-Machines a 100,000 Times Faster than Previous Methods

    Electric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Enzo Kopperger / TUM

    Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date. This makes nanobots fast enough to do assembly line work in molecular factories. The new research results will appear as the cover story on 19th January in the renowned scientific journal Science.

  • Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

    CRC 1066 logo. © CRC 1066

    Focus on the development of drug carriers from polymer chemicals for use in biological systems.

    The German Research Foundation (DFG) has agreed to fund the Mainz-based Collaborative Research Center (CRC) 1066 "Nanodimensional Polymer Therapeutics for Tumor Therapy" involved in the development of nanomaterials for cancer immunotherapy for another four years to the end of June 2021. This extension confirms Mainz as a major research hub in this field that requires input from both chemistry and biomedicine alike. Contributing to CRC 1066 are the Chemistry, Pharmaceutical Sciences, and Physics institutes at Johannes Gutenberg University Mainz (JGU) together with the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) in Mainz. The German Research Foundation will provide nearly EUR 13 million in financing over the next four years.

  • Hamburger Wissenschaftler entwickeln Nanomaterialien für die Umwandlung von Wärme in Strom

    Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Hamburg (TUHH), des Helmholtz-Zentrum Geesthacht (HZG) in Kooperation mit der kanadischen University of Alberta haben ein neuartiges optisches Nanomaterial hergestellt, das es ermöglicht, Wärme direkt in Strahlung und danach mit hoher Effizienz in elektrische Energie umzuwandeln. Das neu entwickelte Nanomaterial soll einen wichtigen Beitrag leisten, moderne Industriegesellschaften auf ressourcenschonenden Energieeinsatz umzustellen. Publiziert wird die Arbeit am 6. Juni 2016 in „Nature Communications“, einer der weltweit wichtigsten Fachzeit-schriften für fachübergreifende, wissenschaftliche Forschungsarbeiten.

  • How nanotechnology is going to shape the electronics industry

    How nanotechnology is going to shape the electronics industry


    Electronics industry is one of the most interesting industry sector - if not the most interesting - for the application of nanotechnology. Already in present time, nanotechnology has already been introduced to the electronic industry. The critical length scale of the integrated circuits are already in nano scale. In this particular article few of the most popular product segments will be discussed.

  • If Solubilty is the Problem - Mechanochemistry is the Solution

    Mechanical energy provided by the collision of milling ball in planetary ball mills allows to synthesize nanographene structures under environmentally friendly and solvent-free reaction conditions. Sven Grätz


    Chemist Dr. Lars Borchardt and his team at TU Dresden recently achieved a huge breakthrough in the synthesis of nanographenes. Because of their unique electrical, thermal and mechanical characteristics, the carbon modification graphene and its little brothers the nanographenes are known as a very promising material for applications in electronics, sensor technology and energy storage.

  • Joining Metals without Welding

    The aluminium flange is firmly attached to the aluminium wall. Photo: Siekmann, CAU

    Kiel prototype for new connection technology will be presented at the Hannover Messe. Welding is still the standard technique for joining metals. However, this laborious process carried out at high temperatures is not suitable for all applications. Now, a research team from the "Functional Nanomaterials" working group at Kiel University, together with the company Phi-Stone AG from Kiel, has developed a versatile alternative to conventional welding and gluing processes.

  • Lichtfernbedienung für die Reparatur von Materialien

    Durch Licht-Bestrahlung kann sich die intelligente Kunststoffbeschichtung gezielt selbst reparieren. Bild: Stefan Hecht

    Forscherteam unter Leitung der HU entwickelt intelligente Kunststoffbeschichtung, die sich durch Licht-Bestrahlung gezielt repariert. Muss ein stark beschädigter Alltagsgegenstand ausgewechselt werden, ist das zumeist umweltbelastend und teuer. Um dies in Zukunft zu vermeiden, arbeiten Forscher seit Jahren an der Entwicklung neuer Materialien, die Kratzer oder Risse reparieren können. Ein Team unter Leitung von Forschern der Humboldt-Universität zu Berlin (HU) hat nun erstmals Kunststoffbeschichtungen entwickelt, die mit Hilfe von Licht gezielt Beschädigungen heilen können. Die Ergebnisse ihrer Studie stellen sie in der Nature Communications vor.

  • Liquid Crystals Form Nano Rings

    Liquid crystal in a nanopore. A. Zantop/M. Mazza/K. Sentker/P. Huber, Max-Planck Institut für Dynamik und Selbstorganisation/Technische Universität Hamburg (TUHH).

    Quantised self-assembly enables design of materials with novel properties. At DESY's X-ray source PETRA III, scientists have investigated an intriguing form of self-assembly in liquid crystals: When the liquid crystals are filled into cylindrical nanopores and heated, their molecules form ordered rings as they cool – a condition that otherwise does not naturally occur in the material. This behavior allows nanomaterials with new optical and electrical properties, as the team led by Patrick Huber from Hamburg University of Technology (TUHH) report in the journal Physical Review Letters.

  • Lithium-Ionen Akkus: Kapazität kann um das Sechsfache gesteigert werden

    Lithium Ionen Akkus Kapazität kann um das Sechsfache gesteigert werden | Lithium-Ionen wandern in die Schicht aus kristallinem Silizium ein. Im Lauf der Beladung bildet sich eine 20 Nanometer dünne Schicht (rot) in der Si-Elektrode, die extrem viele Lithium-Atome aufnimmt Abbildung: HZB

    Lithium-Ionen-Akkus könnten ihre Kapazität um das Sechsfache erhöhen, wenn ihre Anode statt aus Graphit aus Silizium bestünde. Ein Team vom Institut für weiche Materie und funktionale Materialien des Helmholtz-Zentrum Berlin (HZB) hat erstmals detailliert beobachtet, wie Lithium-Ionen in Silizium einwandern. Ihre Arbeit zeigt, dass schon extrem dünne Silizium-Schichten ausreichen, um die theoretisch mögliche Kapazität des Akkus zu realisieren. Die Arbeit ist veröffentlicht in der Zeitschrift ACSnano der American Chemical Socity (DOI: 10.1021/acsnano.6b02032)

  • Magnetic Quantum Objects in a "Nano Egg-Box"

    The principle of the fabrication of a "quantum egg-box" with a novel masked ion-beam technology. It allows to produce at the same time hundreds of thousands of traps for fluxons. Copyright: Wolfgang Lang, University of Vienna

    Magnetic quantum objects in superconductors, so-called "fluxons", are particularly suitable for the storage and processing of data bits. Computer circuits based on fluxons could be operated with significantly higher speed and, at the same time, produce much less heat dissipation. Physicists around Wolfgang Lang at the University of Vienna and their colleagues at the Johannes-Kepler-University Linz have now succeeded in producing a "quantum egg-box" with a novel and simple method. They realized a stable and regular arrangement of hundreds of thousands of fluxons. The results appear in the new journal "Physical Review Applied" of the renowned "American Physical Society".

  • Manipulating superconducting plasma waves with terahertz light

    Manipulating superconducting plasma waves with terahertz light | Josephson plasma wave in a layered superconductor, parametrically amplified through a strong terahertz light pulse. Image: J.M. Harms/MPI for the Structure and Dynamics of Matter

    Terahertz illumination amplifies Josephson plasma waves in high temperature superconductors, potentially paving the way for stabilizing fluctuating superconductivity

    Most systems in nature are inherently nonlinear, meaning that their response to any external excitation is not proportional to the strength of the applied stimulus. Nonlinearities are observed, for example, in macroscopic phenomena such as the flow of fluids like water and air or of currents in electronic circuits. Manipulating the nonlinear behavior is therefore inherently interesting for achieving control over several processes. An international team of researchers led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg utilized the nonlinear interaction between a terahertz light field and a superconducting plasma wave in a high temperature cuprate superconductor to amplify the latter. This resulted in a more coherent superconductor, which is less susceptible to thermal fluctuations. Due to the non-dissipative superconducting nature of the plasma wave, the study opens up new avenues for “plasmonics”, a field of science utilizing plasma waves for transmitting information. These findings are reported in the journal Nature Physics.

  • Manipulation of the characteristics of magnetic materials

    In the simulation, magnetic signals spread along the domain walls in a few nanoseconds. The signals behave in a wave-like manner, with the initially high amplitude rapidly becoming smaller. McCord

    Magnets are not everywhere equally magnetized, but automatically split up into smaller areas, so-called magnetic domains. The walls between the domains are of particular importance: they determine the magnetic properties of the material. A research team of material scientists from Kiel University is working on artificially creating domain walls to be able to modify in a controlled way the behaviour of magnets on a nanometre scale. In the long term, this method could also be used for high-speed and energy-efficient data transfer. The research results were recently published in the renowned journal “Scientific Reports”.

  • Meteoriteneinschlag im Nano-Format

    Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.