Molecular diagnostics

Molecular diagnostics is a collection of techniques used to analyse biological markers in the genome and proteome—the individual's genetic code and how their cells express their genes as proteins—by applying molecular biology to medical testing. The technique is used to diagnose and monitor disease, detect risk, and decide which therapies will work best for individual patients.

By analysing the specifics of the patient and their disease, molecular diagnostics offers the prospect of personalised medicine.

These tests are useful in a range of medical specialisms, including infectious disease, oncology, human leukocyte antigen typing (which investigates and predicts immune function), coagulation, and pharmacogenomics—the genetic prediction of which drugs will work best.(v-vii) They overlap with clinical chemistry (medical tests on bodily fluids).

  • Bringing artificial enzymes closer to nature

    Representation of the new-to-nature olefin metathesis reaction in E. coli using a ruthenium-based artificial metalloenzyme to produce novel high added-value chemicals.

    Scientists at the University of Basel, ETH Zurich, and NCCR Molecular Systems Engineering have developed an artificial metalloenzyme that catalyses a reaction inside of cells without equivalent in nature. This could be a prime example for creating new non-natural metabolic pathways inside living cells, as reported today in Nature.

  • Easier Diagnosis of Esophageal Cancer

    New imaging technologies allow earlier diagnosis of tumors. Source: Murad Omar/Helmholtz Zentrum München

    The Institute of Biological and Medical Imaging at Helmholtz Zentrum München is heading the ”Hybrid optical and optoacoustic endoscope for esophageal tracking” (ESOTRAC) research project, in which engineers and physicians together develop a novel hybrid endoscopic instrument for early diagnosis and staging of esophageal cancer. The device may reduce the number of unnecessary biopsies and, importantly, facilitate early-disease detection leading to earlier start of therapy, which improves therapeutic efficacy over late-disease treatment and leads to immense cost-savings. ESOTRAC has been awarded four million Euros from Horizon 2020, the EU framework program for research and innovation.

  • Molecular "Trojan horses" render infections visible

    Diagnosis of bacterial infections: The two mice on the left side are infected with Pseudomonas aeruginosa; fluorescent-labelled siderophore conjugates visualise the bacteria in the living organism. HZI/Bushra Rais

    HZI researchers develop new agents for the localisation and treatment of multi-resistant bacteria

    Multi-resistant gram-negative bacteria are particularly difficult to control with antibiotics. An agent must first penetrate through a double-hulled cell wall to be able to have an effect. In addition, some infections are difficult to diagnose because they are located deeply inside the body. A promising strategy for the detection and control of these infections is to use molecular probes with theranostic properties: They allow for simultaneous diagnosis and therapy of the infection at an early stage.

  • Molecules Brilliantly Illuminated

    An artistic view of frequency conversion from near-infrared to mid-infrared through a nonlinear crystal. Shortwave radiation enters a crystal and drives electron motion. The electrons cannot fully follow the frequency of the light field and partially oscillate at lower frequencies. In this way mid-infrared radiation is generated. Copyright: Alexander Gelin

    Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

  • Nanodiamonds in the Brain

    Albumin-coated nano-diamonds can cross the blood-brain barrier and be used for diagnostic and therapeutic purposes in the brain.

    The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

  • Nanoparticles Help with Malaria Diagnosis – New Rapid Test in Development

    Fluorescent nanoparticles, excited by UV light. © Photo K. Dobberke für Fraunhofer ISC

    The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

  • New Method Speeds Up Development of Medication

    In the laboratory of Bernhard Spingler (r.), trainee Philipp Nievergelt (l.) made an important contribution to determine the crystal structures of organic salts faster and easier. UZH

    UZH researchers have developed a novel method that speeds up the process of determining crystal structures of organic salts and significantly reduces the effort required to do so. As about 40 percent of all active pharmaceutical ingredients are salts, this new crystallographic method is set to greatly accelerate drug development.

  • Ready for new turbulences

    Detail of a high-resolution computer simulation of a highly turbulent salt solution. © University of Twente

    First Max Planck Center for the physics of complex fluid dynamics is inaugurated / Collaboration between two Max Planck Institutes and research groups from the University of Twente.

    The Max Planck Society and the University of Twente are joining forces to set up a groundbreaking centre for the investigation of complex fluid dynamics in Enschede/The Netherlands. The two parties are investing around ten million euros in total to enable this Max Planck - University of Twente Center for Complex Fluid Dynamics to make progress in medical diagnostics, or the operation of wind turbines, for example. It is anticipated that the outstanding research groups and the unique laboratory facilities, which can be used jointly via the Center, will attract scientific talent from all over the world. The inauguration will be celebrated with a symposium at the University of Twente on 3 March with the Presidents of the two institutions, the leading scientists and political guests.

  • Selective manipulation of enzyme can stop cancer cachexia

    Healthy fat tissue is essential for extended survival in the event of tumor-induced wasting syndrome (cachexia). In Nature Medicine, researchers at Helmholtz Zentrum München show that selective manipulation of an enzyme can stop unwanted metabolic processes.

  • Successfully Treating Genetically Determined Autoimmune Enteritis

    Poor to moderately differentiated adenocarcinoma of the stomach. H&E stain.

    Using targeted immunotherapy, doctors have succeeded in curing a type of autoimmune enteritis caused by a recently discovered genetic mutation. This report comes from researchers at the Department of Biomedicine of the University of Basel and University Hospital Basel. Their results raise new possibilities for the management of diarrhea, which is often a side effect of melanoma treatment. Immunodeficiencies can arise due to gene mutations in immune system proteins. As such mutations rarely occur, these immunodeficiencies often go unrecognized or are detected too late for effective treatment. Currently, there are more than 300 different known genetically determined immunodeficiencies, with new examples being described almost every week.

  • The First Precise Measurement of a Single Molecule's Effective Charge

    Scientists can determine the effective electrical charge of a molecule by trapping it in a potential well by measuring how long it stays inside. © Madhavi Krishnan / University of Zurich

    For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics. Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve interactions between molecules like proteins, where their charge plays an essential role. Yet, the charge of a protein in an aqueous environment – its natural context in a living organism – is hard to determine accurately using traditional approaches.

  • Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning

    With SpectoVive, doctors can interact in a three-dimensional space with a part of the body that requires surgery. Screenshot: University of Basel

    Before an operation, surgeons have to obtain the most precise image possible of the anatomical structures of the part of the body undergoing surgery. University of Basel researchers have now developed a technology that uses computed tomography data to generate a three-dimensional image in real time for use in a virtual environment. The planning of a surgical procedure is an essential part of successful treatment. To determine how best to carry out procedures and where to make an incision, surgeons need to obtain as realistic an image as possible of anatomical structures such as bones, blood vessels, and tissues.

  • Von Hefezellen lernen: Neue Ansätze für die Therapie von Parkinson

    Gesunde Hefezellen (o.) u. kranke Hefezellen mit Ansammlungen von α-Synuklein-Aggregaten (grün). Mitochondrien (rot) liegen in kranken Z. stark fragmentiert vor, wenn der protektive Faktor  Yhb1 fehlt Quelle: Braus / CNMPB

    Göttinger Wissenschaftler des Exzellenzclusters CNMPB der Universitätsmedizin Göttingen gewinnen neue Einsichten in die Pathologie von Morbus Parkinson. Veröffentlicht in der Fachzeitschrift PLOS GENETICS.