Iron oxide nanoparticles

Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are magnetite (Fe3O4) and its oxidized form maghemite (γ-Fe2O3). They have attracted extensive interest due to their superparamagnetic properties and their potential applications in many fields (although Co and Ni are also highly magnetic materials, they are toxic and easily oxidized).

Applications of iron oxide nanoparticles include terabit magnetic storage devices, catalysis, sensors, and high-sensitivity biomolecular magnetic resonance imaging (MRI) for medical diagnosis and therapeutics. These applications require coating of the nanoparticles by agents such as long-chain fatty acids, alkyl-substituted amines and diols.

  • Artificial DNA can Control Release of Active Ingredients from Drugs

    Prof. Oliver Lieleg uses models to visualize how nanoparticles are bound together by DNA fragments. Such connections may become the basis of drugs that release their active ingredients in sequence. Uli Benz / TUM

    A drug with three active ingredients that are released in sequence at specific times: Thanks to the work of a team at the Technical University of Munich (TUM), what was once a pharmacologist's dream is now much closer to reality. With a combination of hydrogels and artificial DNA, nanoparticles can be released in sequence under conditions similar to those in the human body.

  • Magnetic Micro-boats

    Scientists at the Max Planck Institute for Polymer Research can use a magnetic field to determine the structure that is formed by so-called "superparamagnetic nanoparticles". MPI-P, Lizenz CC-BY-SA

    Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.