Insulation

  • Effective Deposition of Thin Insulating Layers for Sensors in Hydrogen Technology

    Schematic of a hydrogen filling station as an application scenario for pressure sensors with insulation layers. © metamorworks / Shutterstock

    Scientists at the Fraunhofer FEP have investigated new approaches for depositing low-defect insulating layers, part of the joint project “NaFuSS“ (German Federal Ministry of Education and Research/BMBF promotional reference number 13N13171). The aim is to increase the reliability and durability of pressure sensors for hydrogen technology, an area that is becoming increasingly important.

  • EU project INNOVIP: new technologies for long-lasting and cost-effective vacuum insulation panels

    Vacuum Insulation Panels. FIW München

    High-tech building insulation: EU research project INNOVIP to develop new technologies for long-lasting and cost-effective vacuum insulation panels. Munich – The demands from Brussels are ambitious: by 2050, office and private buildings in Europe must lower their CO2 footprint by around 80 percent, compared to 1990 levels (1). Optimal thermal insulation will play a key role in achieving this target. Vacuum insulation panels (VIPs) are particularly promising in this regard, but are still very expensive and difficult to work with. Moreover, to ensure a high level of market acceptance, the lifetime of the panels has to be improved.

  • Fireproofing Made of recycled paper

    A blow-in insulation becomes solid. Empa

    Scientists at Empa teamed up with isofloc AG to develop an insulating material made of recycled paper. It is ideal for prefabricated wooden elements and even multistory timber houses, and protects the construction against fire. What's more: The additive it contains is harmless to humans, animals and the environment. Franziska Grüneberger looks contented; clutching a nondescript cube made of grey flakes in her hand the researcher in the laborato-ry for applied wood materials has achieved her goal: Very little chemistry went into the cube, but no shortage of technical expertise. The tiny object is “living” proof that giant mountains of waste paper can be transformed into a valuable, fireproof insulating material – a big step to save fossil fuels. Not that anyone could tell just by looking at it.

  • Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

    High temperature sensor for extrusion systems: SOI chips (left) and casing (right). Fraunhofer IZM

    Many industrial processes depend on exact pressure gauges. The SOI high-pressure sensors (silicon-on-insulator) developed by the Fraunhofer Institute for Reliability and Microintegration IZM makes this exact monitoring possible for processes operating at temperatures of up to 400° centigrade. The sensor promise an exceptionally long life as well as precision and efficiency. To keep up with technological requirements, future iterations of the sensors will be designed to withstand temperatures above 600° centigrade.

  • IHP brings INFOS conference to Germany

    Improvement of Silicon ICs by dielectrics: At the INFOS conference about 80 international scientists and engineers  will exchange their expertises about dielectrics and silicon circuits. © IHP/ 2017

    International conference unites engineers, technologists, material researchers, physicists and chemists in Potsdam - Their focus is on Insulating Films on Semicondoctors.

    Frankfurt (Oder). In June 2017, engineers, technologists, material researchers, physicists and chemists will meet in Potsdam. It is the first time that the international conference “INFOS” will be performed in Brandenburg. The Leibniz-institute IHP innovations for high performances microelectronics, located in Frankfurt (Oder), is organising the meeting, where experts from Europe, Asia and America will exchange their expertises on Insulating Films on Semicondoctors (INFOS).

  • Superconductors Earn their Stripes

    By Mai-Linh Doan - self photo, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2911413

    Understanding high temperature superconductivity (high Tc) has been a long-standing challenge since its discovery in copper oxide compounds in 1986. A key issue in addressing this problem has involved the study of phases found near superconductivity, typically at temperatures in excess of Tc or at doping levels lower than those needed to achieve this state.