Injection Molding Techniques

Injection moulding is a manufacturing process for producing parts by injecting material into a mould. Injection moulding can be performed with a host of materials, including metals, (for which the process is called diecasting), glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed, and forced into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mouldmaker (or toolmaker) from metal, usually either steel or aluminum, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers which do not melt during the injection moulding of some lower temperature thermoplastics, can be used for some simple injection moulds.

Parts to be injection moulded must be very carefully designed to facilitate the moulding process; the material used for the part, the desired shape and features of the part, the material of the mould, and the properties of the moulding machine must all be taken into account. The versatility of injection moulding is facilitated by this breadth of design considerations and possibilities.

  • Combining the Benefits of 3D Printing and Casting

    In additive freeform molding, the shell of a part is constructed using FDM printing. A dosing unit in the printer then fills this with a two-component mixture. Fraunhofer IPA/Rainer Bez

     

    Researchers at Fraunhofer IPA have developed a new process that combines 3D printing and casting. In additive freeform casting (AFFC), first a shell of the part is manufactured using FLM printing, then this shell is filled with a two-component resin. This saves time, increases stability of the part and allows new materials to be printed.

  • Directly-cooled Electric Motor Made from Polymer Materials

    Sectional view of the electric motor. © Fraunhofer ICT

    Making electric cars lighter also involves reducing the weight of the motor. One way to do that is by constructing it from fiber-reinforced polymer materials. Researchers at the Fraunhofer Institute for Chemical Technology ICT are working together with the Karlsruhe Institute of Technology KIT to develop a new cooling concept that will enable polymers to be used as motor housing materials. And that’s not the only advantage of the new cooling concept: it also significantly increases the power density and efficiency of the motor compared to the state of the art.

  • FlexPLAS®Release Film – Release Agent Free Manufacture of FRP Components in Complex Hot Press Molds

    Removal of FlexPLAS® release film from a contaminant-free CFRP component after curing in the hot press. © Fraunhofer IFAM

    At the JEC 2018 fair in Paris (6-8 March) the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM will present for the first time the use of flexible FlexPLAS® release film in complex hot press molds. You are invited to visit us on the communal stand of CFK Valley in Hall 5 A, Stand E 58. The plasma-coated FlexPLAS® release film developed by Fraunhofer IFAM (Bremen and Stade) has already been successfully used for a number of years for the manufacture of contaminant-free fiber reinforced plastic (FRP) components.