Immunology

  • A New T-cell Population for Cancer Immunotherapy

    Picture of a healthy human T-cell.

    Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

    T lymphocytes (short T cells) are a special type of cells that recognize germs and protect our body from infections. Their second important job is to ride the body of harmed cells, such as tumor cells. T cells are able to identify tumor cells because they look different than normal healthy cells. The way in which they do this is governed by surface expression of T-cell receptors (TCR). Each receptor interacts with a specific molecule on the surface of the target cell.

  • Antibiotic Resistance – Quick and Reliable Detection

    DZIF scientists (from left to right): Alexander Klimka, Sonja Mertins, Paul Higgins. Uniklinik Köln/Klimka

    Early detection of antibiotic resistant pathogens can be life-saving. DZIF-scientists at the Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, have developed an antibody-based diagnostic test, which can identify carbapenem-resistant Acinetobacter baumannii bacteria in only 10 minutes – in a process similar to a pregnancy test.

  • Bacteria Free Themselves with Molecular “Speargun”

    Macrophage infected with Francisella novicida (magenta) assembling a dynamic nano-speargun (green). University of Basel, Biozentrum

    Many bacteria are armed with nano-spearguns, which they use to combat unwelcome competitors or knockout host cells. The pathogen responsible for tularemia, a highly virulent infectious disease, uses this weapon to escape from its prison in cells defending the host. Researchers from the Biozentrum of the University of Basel report on this bacterial strategy in the current issue of “Nature Communications”.

    Tularemia is an infectious disease that mostly affects rabbits and rodents, but also humans can become infected. The cause of this serious disease is the bacterium Francisella tularensis.

  • Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

    Methicillin-resistant Staphylococcus aureus (MRSA) (mustard-coloured) engulfed by a red coloured white blood cells (neutrophil granulocyte). National Institute of Allergy and Infectious Diseases (NIAID)

    Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

  • Cells adapt ultra-rapidly to zero gravity

    Front plate of the experiment equipment. C. Thiel and Airbus DS)

    Mammalian cells fully adapt to zero gravity in less than a minute. Real-time readings on the International Space Station (ISS) reveal that cells compensate ultra-rapidly for changes in gravitational conditions. This new discovery was achieved by an international team headed by scientists at the University of Zurich.

    Mammalian cells are optimally adapted to gravity. But what happens in the microgravity environment of space if the earth’s pull disappears? Previously, many experiments exhibited cell changes – after hours or even days in zero gravity. Astronauts, however, returned to Earth without any severe health problems after long missions in space, which begs the question as to how capable cells are of adapting to changes in gravity.

  • Comprehensive Atlas of Immune Cells in Renal Cancer

    Fluorescent imaging of a tumor section identifies different types of macrophages (green) and T cells (blue) present in the microenvironment of kidney cancer. (image: Karina Silina, UZH)

    Researchers from the University of Zurich have individually analyzed millions of immune cells in tumor samples from patients with renal cell carcinoma. They are now presenting an immunological atlas of the tumor environment for the first time, leading to possible further developments of immunotherapies.

    Renal cell carcinoma is one of the most frequent and deadly urogenital cancers. Even if the tumors are treated, they ultimately end in metastasis in about half of the patients. 90 percent of these patients die within five years. Thanks to new kinds of immunotherapies, the outlook of this patient group has improved, but the treatment only works for a minority of patients.

  • Designer Viruses Stimulate the Immune System to Fight Cancer

    This is a view of a modified lymphocytic choriomeningitis virus (LCMV). © UNIGE / Doron Merkler

    Swiss scientists have created artificial viruses that can be used to target cancer. These designer viruses alert the immune system and cause it to send killer cells to help fight the tumor. The results, published in the journal Nature Communications, provide a basis for innovative cancer treatments.

    Most cancer cells only provoke a limited reaction from the immune system – the body’s defense mechanism – and can thus grow without appreciable resistance. By contrast, viral infections cause the body to release alarm signals, stimulating the immune system to use all available means to fight the invader.

  • Early blood signatures of vaccine immunogenicity

    Vaccination.

    Within seven days of vaccination, a blood test early after vaccination can predict whether vaccines based on living, modified viruses have had the desired effect. This is one of the results of a new study from a large European research collaboration on systems analysis of immune responses induced by a highly promising vaccine against Ebola in which the University of Gothenburg is participating. This result can inform and accelerate rational development of other new vaccines based on living viruses. Since the big Ebola outbreak in West Africa in 2015, a couple of possible vaccines have been proposed. One of the vaccines, which is based on a recombinant vesicular stomatitis virus expressing the glycoprotein of the Zaire strain of the Ebola virus (VSV-ZEBOV), was recently shown to be extremely effective with 100 per cent efficacy against the lethal Ebola virus disease in WHO-funded studies carried out in Guinea and Sierra Leone.

  • Flipping the switch to stop tumor development

    Expanding B-cell tumors. Image: Michael Reth

    Freiburg researchers show how a protein prevents the uncontrolled expansion of immune cells.

    The mammalian immune system consists of millions of individual cells that are produced daily from precursor cells in the bone marrow. During their development, immune cells undergo a rapid expansion, which is interrupted by phases of differentiation to more mature lymphocytes. Alternate phases of proliferation and differentiation occur also during the maturation of antibody-producing B cells. Researchers in Prof. Dr. Michael Reth’s laboratory have come one step closer to understand how the proliferation to differentiation switch in B lymphocytes works, thereby providing new insights into the development of the most common types of tumors in children and potential therapies thereof. The team has published its study in the journal Nature Immunology.

  • Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

    CRC 1066 logo. © CRC 1066

    Focus on the development of drug carriers from polymer chemicals for use in biological systems.

    The German Research Foundation (DFG) has agreed to fund the Mainz-based Collaborative Research Center (CRC) 1066 "Nanodimensional Polymer Therapeutics for Tumor Therapy" involved in the development of nanomaterials for cancer immunotherapy for another four years to the end of June 2021. This extension confirms Mainz as a major research hub in this field that requires input from both chemistry and biomedicine alike. Contributing to CRC 1066 are the Chemistry, Pharmaceutical Sciences, and Physics institutes at Johannes Gutenberg University Mainz (JGU) together with the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) in Mainz. The German Research Foundation will provide nearly EUR 13 million in financing over the next four years.

  • Guards of the human immune system unraveled

    Dendritic cells in lymphatic tissues are mainly influenced by their genetic identity, while in lungs and skin dendritic cells are predominantly affected by tissue-specific factors. © Carla Schaffer / AAAS

    Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response. Scientists of the University Hospital Erlangen of the Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and the LIMES (Life and Medical Sciences) Institute of the University of Bonn gained substantial knowledge of human dendritic cells, which might contribute to the development of immune therapies in the future. The results were recently published in the Journal “Science Immunology”.

  • Hepatitis C and HIV prophylaxis: microwave reduces viral transmission in the drugs scene

    PD Dr. Eike Steinmann und Anindya Siddharta. TWINCORE/Romy Weller

    Infections with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) among people who inject drugs (PWID) are a global health problem. For example, sharing of drug preparation equipment within this population contributes to more than 80% of newly acquired HCV infections. As a response to these circumstances, scientists at TWINCORE validated a simple and safe method to reduce the risk of viral transmission, namely by microwave irradiation. This method has been published recently in Scientific Reports.

  • How cancer cells flood the lung

    Cells isolated from a malignant pleural effusion. Mutation of KRAS was identified in the tumor cell clone (bottom right). Source: Helmholtz Zentrum München

    Lung cancer patients are particularly susceptible to malignant pleural effusion, when fluid collects in the space between the lungs and the chest wall. Researchers at the Helmholtz Zentrum München, in partnership with the German Center for Lung Research (DZL), have discovered a novel mechanism that causes this to happen. Their study, published in ‘Nature Communications’, also shows that various active substances could potentially be used to treat this condition.

  • How Does Friendly Fire Happen in the Pancreas?

    Treatment with an antagomir directed against miR92a results in reduced attacks of immune cells (green) on the insulin (white) producing beta cells directly in the pancreas. Moreover, the treatment leads to more regulatory T cells (red) able to protect the beta cells. Source: Helmholtz Zentrum München

    In type 1 diabetes, the body attacks its own insulin-producing cells. Scientists at Helmholtz Zentrum München, partner in the German Center for Diabetes Research, and their colleagues at Technical University of Munich have now reported in the journal ‘PNAS’ about a mechanism used by the immune system to prepare for this attack. They were able to inhibit this process through targeted intervention and are now hoping this will lead to new possibilities for treatment.

  • How multi-resistant pathogens can be defeated

    Electron micrograph showing Staphylococcus aureus.  HZI/Manfred Rohde

    HZI researchers investigate the applicability of anti-virulence strategies to treat bacterial infections

    The steadily increasing resistance of many pathogens to antibiotics is one of the major challenges of modern medicine. Many of the common antibiotics have already lost their effect. Accordingly, there is an urgent need for alternatives to antibiotics for the treatment of infections that are caused by multi-resistant bacteria, one of which is anti-virulence therapy.

  • Immune cells derived from specialised progenitors

    In the lab (from left): Prof. Dr. Joachim Schultze, Patrick Günther and Dr. Andreas Schlitzer from LIMES-Institute at University of Bonn. © Foto: Volker Lannert/Uni Bonn

    Dendritic cells are gatekeepers of Immunity. Up to now dendritic cell subtypes were thought to develop from one common progenitor. Now, in a joint effort, researchers from A*STAR Singapore Immunology Network, LIMES-Institute and cluster of excellence ImmunoSensation from University of Bonn and the German Center for Neurodegenerative Diseases were able to show with single cell resolution that this important component of the human immune system develops from specialized progenitors. These findings are now published in “Science” and have implications for the development and optimization of vaccines.

  • Immune system reactions elucidated by mathematics

    Bacteria of the species Streptococcus pneumoniae colonising an endothelial cell. HZI/M. Rohde

    Using computer-based simulations and mouse experiments, HZI researchers disentangled the effects of proinflammatory signaling molecules on the post-influenza susceptibility to pneumococcal coinfection. A body infected by the influenza virus is particularly susceptible to other pathogens. Bacteria like Streptococcus pneumoniae, i.e. the pathogen causing pneumonia, find it easy to attack an influenza-modulated immune system and to spread widely. This can even be fatal in some cases. The reasons for the bacterial growth in the presence of a coinfection by influenza virus and bacteria is still debatable.

  • Inactivate vaccines faster and more effectively using electron beams

    Fraunhofer FEP.

    The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, one of the leading research and development partners for electron beam applications, is developing processes and equipment based on this technology for use in medicine, pharmacology, and that conserves natural resources and protects the environment. Scientists at Fraunhofer FEP in conjunction with other partners within the Fraunhofer Gesellschaft have been conducting research for several years on employing electron-beam technology in medical engineering. Low-energy inactivation of pathogens by means of electron beams (LEEI – Low-Energy Electron Irradiation) can also be used for faster manufacture of more effective vaccines. The foundation for this has been under joint development by the Fraunhofer FEP, IZI, IPA, and IGB Institutes since 2014.

  • Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

    Under the influence of interferons, chronic viral infections cause strong inflammation. This causes the B cells to initiate an inadequate immune response. Department of Biomedicine, University of Basel

    Scientists at the University of Basel discovered a fundamental new mechanism explaining the inadequate immune defense against chronic viral infection. These results may open up new avenues for vaccine development. They have been published in the journal “Science Immunology”.

  • Is an agent used to treat psoriasis aimed at the wrong target?

    Common psoriasis, also called psoriasis vulgaris, is an inflammatory skin disease. Source Helmholtz Zentrum München

    The antibody ustekinumab is in use for treatment of psoriasis since 2009. It inhibits the underlying inflammation by neutralizing certain messengers of the immune system. Researchers at the Helmholtz Zentrum München, the Technical University of Munich and the University of Zurich have now shown in ‘Nature Communications’ that one of these messengers could actually be helpful in battling the illness. Common psoriasis, also called psoriasis vulgaris, is an inflammatory skin disease that is characterized by severely scaling skin in areas ranging from small to palm-sized. The disease is estimated to affect between two and three percent of all Europeans.