Biodegradable Materials

  • “MuReA“ Provides Quick and Large-Scale Laser Applications

    The multi remote system of the Fraunhofer IWS Dresden processes large areas by means of laser radiation and atmospheric pressure plasma. © Fraunhofer IWS Dresden

    The Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS developed the novel remote system concept (MuReA) for quick, flexible and efficient laser processing tasks. IWS scientists combined laser remote systems, spindle drives and high performance beam sources with each other. As a result, this novel laser system enables large-scale, flexible and quick processing tasks for materials such as aluminum, stainless steel as well as fiber reinforced polymers. Working areas of up to one square meter can be processed at a laser beam speed of up to 10 meters per second. In particular, the automotive and the aerospace industry will benefit from possible applications.

  • A Transparent and Thermally Stable Polyamide – 100 Percent Biobased

    From wood waste to high-performance polymers: Terpenes from turpentine are converted to bio-based, transparent and heat-stable polyamides under application of a new catalytic process. Fraunhofer IGB

    The natural substance 3-carene is a component of turpentine oil, a waste stream of the production of cellulose from wood. Up to now, this by-product has been incinerated for the most part. Fraunhofer researchers are using new catalytic processes to convert 3-carene into building blocks for biobased plastics. The new polyamides are not only transparent, but also have a high thermal stability.

  • Biodegradable composites: a significant advance in medical implant technology

    • Evonik is conducting research on new composite materials for the fixation of fractured bones
    • Bioresorbable polymers degrade naturally in the body, eliminating the need for additional surgery
    • Medical implant technology is an attractive and growing market

  • Ears from the 3D-printer

    A 3D-printed ear: Empa researcher Michael Hausmann uses nanocellulose as the basis for novel implants. Empa

    Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing. It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains: «In viscous state cellulose nanocrystals can easily be shaped together with nother biopolymers into complex 3-dimensional structures using a 3D printer, such as the Bioplotter.” Once cross-linked, the structures remain stable despite their soft mechanical properties.

  • Fraunhofer IMWS Tests Environmentally Friendly Microplastic Alternatives in Cosmetic Products

    Photographic images of tooth enamel samples in their initial state, after discoloration and after cleaning. The samples were cleaned with a toothpaste containing cellulose. Fraunhofer IMWS

    Microplastics are still used in personal care products, although the environmental impact is well known. Tiny plastic particles from peelings and other skincare products enter the sea and ultimately our food chain via waste-water systems. In a research project, the Fraunhofer Institute for Microstructure of Materials and Systems IMWS and its partners have tested materials that can replace microplastics in cosmetic products and are biodegradable.

  • Insects Supply Chitin as a Raw Material for the Textile Industry

    After pupae shed their skin, pupal exuviae remain as residual stream. Fraunhofer IGB

    Harmful chemicals are often used in textile processing. That is why the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB is researching harmless biobased alternatives. The Institute is working on utilizing side streams from the animal feed manufacture for the production of chitosan.

  • Lightwave Controlled Nanoscale Electron Acceleration Sets the Pace

    The waveform-controlled laser pulse creates a plasmon-enhanced near-field that drives the forward acceleration of an electron during its passage through the nanometer-sized metal cluster.  c University of Rostock

    Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

  • Nanocarriers Should Cure Grapevine Trunk Diseases

    The NanoProtect project aims to find a cure for the grapevine trunk disease. Copyright: Dr. Frederik Wurm

    The Volkswagen Foundation (VolkswagenStiftung) has selected the interdisciplinary project “NanoProtect” of Dr. Frederik Wurm, head of the Functional Polymers research group at the Max Planck Institute (MPI) for Polymer Research in Mainz, Germany, for its funding initiative 'Experiment!'. Wurm’s research is focussing on the design and development of degradable polymers and nanocarriers.

  • New Test Rig Components for Faster Development and Validation

    Prototype of a mount with tunable stiffness. Photo: Fraunhofer LBF/Raapke

    Numerical simulations have massively accelerated product development over the past few decades. A variety of scenarios can be tested in a short time and the number of necessary prototypes has been steadily reduced. Nevertheless, physical tests will not lose significance. Numerical models must be validated and approval testing must be carried out. In the project “Digitization in Testing Technology”, scientists from the Fraunhofer Institute for Structural Durability and System Reliability LBF have developed tunable test rig components and a mechanical hardware-in-the-loop approach. The Results will present at the Automotive Testing Expo in Stuttgart, May 21-23, 2019 in hall 8, booth 8052.

  • Self-disposing supramolecular materials with a tunable lifetime

    With the peptide-synthesizer Dr. Marta Tena-Solsona produces the building blocks for the gels she investigates. Photo: Uli Benz / TUM

    Materials that assemble themselves and then simply disappear at the end of their lifetime are quite common in nature. Researchers at the Technical University Munich (TUM) have now successfully developed supramolecular materials that disintegrate at a predetermined time – a feature that could be used in numerous applications. Plastic bottles, empty cans, old toys, torn T-shirts and worn-out mobile phones – day for day, mankind produces millions of tons of waste. How can we prevent our planet from stifling in the garbage?