Forschungsergebnisse lassen künftige Steuerung hocheffizienter Laser zu. Physiker der Otto-von-Guericke-Universität Magdeburg haben gemeinsam mit Kollegen aus Österreich und den USA eine neue Art von Lichtspeichern, so genannten Mikroresonatoren, entwickelt, die erstmals Lichtwellen nicht nur einschließen, sondern auch gezielt und kontrolliert leiten können.

Diese Forschungsergebnisse könnten künftig die bisher auf der Mobilität von Elektronen basierende Weiterleitung digitaler Informationen durch kontrolliert gelenkte Lichtwellen ersetzen. Im Gegensatz zu den sich relativ langsam und mit großem Reibungsverlust bewegenden Elektronen wäre Licht wesentlich schneller unterwegs. Zudem würden sich Prozessoren aufgrund der fehlenden Reibungswärme nicht aufheizen.

Das Team um den Physiker Prof. Jan Wiersig vom Lehrstuhl für Theoretische Physik der Universität Magdeburg hat ihre Forschungsergebnisse soeben in dem renommierten internationalen Fachjournal Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

„Licht ist nicht greifbar und bewegt sich zudem mit großer Geschwindigkeit“, so Prof. Jan Wiersig. „Es lässt sich jedoch auf kleinstem Raum einfangen, indem man es an den Wänden eines mikroskopischen Containers totalreflektieren lässt. Durch die ständige Spiegelung wird das Licht gewissermaßen eingesperrt und kann nicht entweichen.“ Ähnlich einem Karussell laufe das Licht dabei im Kreis, allerdings ohne wohldefinierten Umlaufsinn. Die Wissenschaftlerinnen und Wissenschaftler haben nun nachgewiesen, wie dieser Lichtfluss dynamisch kontrolliert werden kann. „Dadurch erhalten diese Strukturen neue Funktionalitäten und potentielle Anwendungen, wie z.B. die Informationsübertragung oder das Steuern der Lichtausstrahlungsrichtung von winzigen hocheffizienten Lasern“, so Wiersig.

Bereits vor einigen Jahren hatte seine Arbeitsgruppe die Vermutung aufgestellt, dass Licht in asymmetrisch geformten Mikroresonatoren eine gewisse Vorzugsrichtung habe und so zielgerichtet gesteuert und gelenkt werden könne. Nun wurde diese Vorhersage in einer Kooperation mit den Teams von Prof. Stefan Rotter von der TU Wien und Prof. Lan Yang von der Washington University experimentell bestätigt.

 

Physiker entwickeln Verfahren um Licht kontrolliert zu leiten | Mikroresonator mit Nanonadeln und Wellenleitern Foto: Dr. Sahin Kaya Özdemir, Washington University
Mikroresonator mit Nanonadeln und Wellenleitern
Foto: Dr. Sahin Kaya Özdemir, Washington University

 

Originalpublikation:
Chiral modes and directional lasing at exceptional points; from Bo Peng, Şahin Kaya Özdemir, Matthias Liertzer, Weijian Chen, Johannes Kramer, Huzeyfe Yılmaz, Jan Wiersig, Stefan Rotter, and Lan Yang
DOI: http://dx.doi.org/10.1073/pnas.1603318113

 

Ansprechpartner für die Medien:
Prof. Dr. rer. nat. habil. Jan Wiersig
Institut für Technische Physik der Otto-von-Guericke-Universität Magdeburg
Tel.: +49 391 67 18671
E-Mail: Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Anmelden