The new electrocatalyst for hydrogen fuel cells consists of a thin platinum-cobalt alloy network and, unlike the catalysts commonly used today, does not require a carbon carrier. Gustav Sievers

An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable. The new process is industrially applicable and can be used to further optimize fuel cell powered vehicles without CO2 emissions.

Using computer simulations, MPI-P scientists can predict the structure of crystals in organic semiconductor layers. © MPI-P

Semiconductors made of organic materials, e.g. for light-emitting diodes (OLEDs) and solar cells, could replace or supplement silicon-based electronics in the future. The efficiency of such devices depends crucially on the quality of thin layers of such organic semiconductors. These layers are created by coating or printing “inks” that contain the material. Researchers at the Max Planck Institute for Polymer Research (MPI-P) have developed a computer model that predicts the quality of such layers as a function of processing conditions, such as the drying time of the ink or the speed coating. This model aims to accelerate the time-consuming approaches for process and product optimization.

The technology: additively manufactured Hairpin traction motor. Additive Drives, TU Bergakademie Freiber

Using a novel 3D printing process, four spin-offs of the newly launched EXIST research transfer "Additive Drives" at the TU Bergakademie Freiberg want to increase the performance and efficiency of current electric machines. The main focus is on the copper coil. In the future, this is to be transferred directly from the development data of the designers to additive production, thus enabling significantly shorter development and test cycles.

A sample of the electromagnetic shielding material made by Empa – a composite of cellulose nanofibres and silver nanowires. Empa

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight. 
Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals. High-frequency electromagnetic fields can only be shielded with conductive shells that are closed on all sides. Often thin metal sheets or metallized foils are used for this purpose. However, for many applications such a shield is too heavy or too poorly adaptable to the given geometry. The ideal solution would be a light, flexible and durable material with extremely high shielding effectiveness.