The illustrations show in comparison how the blood circulation in the human body (left) and the channels on the multi-organ chip (right) supply the liver, the kidneys and other organs or tissues. © Fraunhofer IWS Dresden

Dresden Fraunhofer engineers have developed a so-called "multi-organ chip". This microsystem from the Fraunhofer Institute for Material and Beam Technology IWS Dresden, which has now received an "EARTO Innovation Award" in Brussels, simulates the blood circulation and the organs of animals or humans. The "lab-on-a-chip" will help industry to develop new drugs and cosmetics more quickly than before. But what is even more important: "We see good opportunities to eliminate the need for many animal experiments," emphasized Dr. Udo Klotzbach, Business Unit Manager Microtechnology at Fraunhofer IWS. In addition, this system opens the door to individualized medicine a little further, in which doctors can determine an exactly fitting therapy for each patient within days instead of years.

The international research team is working on a treatment on dementia like Alzheimer, which leads to a death of neuronal cells. © shutterstock.com/Naeblys

About 29 million people around the world are affected by the disease "Alzheimer". In an international collaboration, scientists of the Max Planck Institute for Polymer Research (MPI-P) in Mainz together with teams from Italy, Great Britain, Belgium and the USA are now working together on an approach for a therapy. On the one hand, the goal is to understand the processes occurring in the brain that lead to the disease; on the other hand the development of a method for targeted drug delivery.

Concept of the Sens-o-Spheres with power receiver, microcontroller and signal processing, battery as well as encapsulation. (c) TU Dresden

The COMPAMED, which takes place annually co-located to the MEDICA in Dusseldorf, Germany, is an established and world-wide well-known marketplace for medical components and technologies. Every year, the COMPAMED asserts itself as the leading international marketplace for suppliers of medical manufacturing.

Especially in the field of medical devices for mobile diagnostics, therapy and laboratory equipment increasingly powerful, smart and reliable high-tech solutions are needed. This is why the demand for miniaturization of medical components continues to grow steadily.

Neurite outgrowth assay of neurons expressing GFP. The first and last time point (0 min, 50 min) are pseudocolored in magenta and cyan, respectively. Busskamp Lab CRTD

An interdisciplinary and international research group led by Dr. Volker Busskamp from the Center for Regenerative Therapies Dresden at the TU Dresden (CRTD) has decoded the regulatory impact on neuronal survival of a small non-coding RNA molecule, so-called miRNA, at the highest resolution to date. This deciphering of gene regulation primes applications for strengthening neurons in order to protect them from neurodegenerative diseases. The extensive systems biology methods used here could become a new standard for the way miRNAs are researched.