The first touchscreen that taps back: Engineers Sophie Nalbach and Steffen Hau from Stefan Seelecke’s team test the prototype system that will be exhibited at Hannover Messe. Credit: Oliver Dietze

By pulsing or vibrating on demand, smartphone screens can help users navigate through a menu or can guide a user’s finger to virtual on-screen buttons that can be created or removed wherever and whenever needed. Professor Stefan Seelecke and his team at Saarland University have developed a film that gives touchscreens a third dimension. The thin and extremely lightweight silicone film can adopt a variety of positions and shapes and can be made to execute a single pulse, a pushing motion, a sudden jolt or a prolonged vibration at a specific location on the screen. The polymer film also exhibits sensor properties and can therefore provide the device with an added sense organ.

Fraunhofer IAF develops electronic components and systems based on GaN. The image shows a processed GaN wafer. © Fraunhofer IAF

The electronics market is growing constantly and so is the demand for increasingly compact and efficient power electronic systems. The predominant electronic components based on silicon will in foreseeable future no longer be able to meet the increasing industrial requirements.This is why scientists from the university of Freiburg, the Sustainability Center Freiburg and the Fraunhofer-Gesellschaft have joined forces in order to explore a new material structure that may be better suited for future power electronics.

An atom is trapped in the resonator between two mirrors (left). A reflected light pulse gets entangled with the atom and may fly freely as a superimposed cat state (right). Bastian Hacker, Max Planck Institute of Quantum Optics (MPQ)

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state. In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken experiment is a cat that is simultaneously dead and alive. Since Schrödinger proposed his ‘cat paradox’, physicists have been thinking about ways to create such superposition states experimentally.

Graphic animation of a possible data memory on the atomic scale: A data storage element - consisting of only 6 xenon atoms - is liquefied by a voltage pulse. Universität Basel, Departement of Physics

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.