Light hits the 3D-printed nanostructures from below. After it is transmitted through, the viewer sees only green light—the remaining colors are redirected. Thomas Auzinger

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and certain color effects are impossible to achieve. The natural world, however, also exhibits structural coloration, where the microstructure of an object causes various colors to appear. Peacock feathers, for instance, are pigmented brown, but—because of long hollows within the feathers—reflect the gorgeous, iridescent blues and greens we see and admire.

Matter and antimatter in the nanoscale magnetic universe: a gas of skyrmions (purple) and antiskyrmions (green) generated from the trochoidal dynamics of a single antiskyrmion seed. Ill./©: Joo-Von Kim


Nanosized magnetic particles called skyrmions are considered highly promising candidates for new data storage and information technologies. Now, physicists have revealed new behavior involving the antiparticle equivalent of skyrmions in a ferromagnetic material. The researchers demonstrated their findings using advanced computer simulations that can accurately model magnetic properties of nanometer-thick materials.

Configuration of a switchable plasmonic router consisting of a T-shaped metallic waveguide surrounded by a ferromagnetic dielectric material and under the action of an external magnetic field. Fig. MBI


Plasmonic waveguides open the possibility to develop dramatically miniaturized optical devices and provide a promising route towards the next-generation of integrated nanophotonic circuits for information processing, optical computing and others. Key elements of nanophotonic circuits are switchable plasmonic routers and plasmonic modulators.

Graphic: Wilfried Weber


Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. These biohybrid systems were engineered to perform certain functions, such as the counting signal pulses in order to release bioactive molecules or drugs at the correct time, or to detect enzymes and small molecules such as antibiotics in milk. The interdisciplinary team presented their results in some of the leading journals in the field, including Advanced Materials and Materials Today.