An atom is trapped in the resonator between two mirrors (left). A reflected light pulse gets entangled with the atom and may fly freely as a superimposed cat state (right). Bastian Hacker, Max Planck Institute of Quantum Optics (MPQ)

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state. In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken experiment is a cat that is simultaneously dead and alive. Since Schrödinger proposed his ‘cat paradox’, physicists have been thinking about ways to create such superposition states experimentally.

Graphic animation of a possible data memory on the atomic scale: A data storage element - consisting of only 6 xenon atoms - is liquefied by a voltage pulse. Universität Basel, Departement of Physics

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Jena doctoral student Benjamin Kintzel looks at a laboratory vessel containing crystals of a novel molecule that may possibly be used in a quantum computer. Photo: Jan-Peter Kasper/FSU

 

Quantum computers could vastly increase the capabilities of IT systems, bringing major changes worldwide. However, there is still a long way to go before such a device can actually be constructed, because it has not yet been possible to transfer existing molecular concepts into technologies in a practical way. This has not kept researchers around the world away from developing and optimising new ideas for individual components. Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer. They report on their work in the current issue of the research journal ‘Chemical Communications’.

Noisy fluorescence microscopy image of cell nuclei of the planaria Schmidtea mediterranea (top) and the result after applying CARE (bottom). © Martin Weigert, Tobias Boothe, and Florian Jug / MPI-CBG, CSBD

 

Modern microscopes can record many hours of 3D time-lapse movies of every cell as an organism develops. Just as for regular photography, fluorescence microscopy requires enough light to avoid dark and noisy images. However, the light necessary for such movies can easily reach levels that harm frequently studied model organisms such as worms, fish, and mice. To date, the only option to avoid this “ultimate sunburn” is to record shorter movies or reduce the amount of light used. As a consequence, many biologists are forced to work with very noisy images that are hard to interpret. Researchers around Florian Jug and Eugene W. Myers at the Center for Systems Biology Dresden (CSBD) and the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), have now developed a content-aware image restoration method – CARE – that solves this dilemma.