The lifetime of programmable structural dynamics can be infinitely varied in this DNA-based system. Photo: AG Walther

Programmable structural dynamics successful for first time in self-organizing fiber structures.
Cells assemble dynamically: their components are continuously exchanging and being replaced. This enables the structures to adapt easily to different situations, and by rearranging the components to respond to stimuli faster, to renew or to form just on demand. The microtubules, a scaffold structure made of protein fibers that can be found in the cytoplasm of the cells of algae, plants, fungi, animals and humans, are one such dynamic mesh. Because of their self-organizing structure, these fibers constantly form and degrade at the same time, thereby actively supporting the cell in complex tasks such as cell division or locomotion. The fibers require energy to form and maintain such dynamic states.

Stacked Janus nanocups, before being separated. University of Duisburg-Essen (UDE)

They look like interlocking egg cups, but a hen's egg is 100,000 times as thick as one of the miniature cups: Scientists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE) have made polymers to form themselves into tiny cups on their own. They could, for example, be used to remove oil residues from water. The scientists have published their results in the journal "Angewandte Chemie".

Electron microscopic image of the hybrid material. Image: Pawan Kumar / University of Alberta

Chemists at the Technical University of Munich (TUM) have developed an efficient water splitting catalyst as part of a collaborative international research effort. The catalyst comprises a double-helix semiconductor structure encased in carbon nitride. It is perfect for producing hydrogen economically and sustainably. An international team led by TUM chemist Tom Nilges and engineer Karthik Shankar from the University of Alberta have now found a stable yet flexible semiconductor structure that splits water much more efficiently than was previously possible. 

Potassium bromide molecules (pink) arrange themselves between the copper substrate (yellow) and the graphene layer (gray). This brings about electrical decoupling. © Department of Physics, University of Basel

The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. This alters the electrical properties of the graphene produced, bringing them closer to pure graphene, as reported by physicists from the universities of Basel, Modena and Munich in the journal ACS Nano.