The international research team is working on a treatment on dementia like Alzheimer, which leads to a death of neuronal cells. © shutterstock.com/Naeblys

About 29 million people around the world are affected by the disease "Alzheimer". In an international collaboration, scientists of the Max Planck Institute for Polymer Research (MPI-P) in Mainz together with teams from Italy, Great Britain, Belgium and the USA are now working together on an approach for a therapy. On the one hand, the goal is to understand the processes occurring in the brain that lead to the disease; on the other hand the development of a method for targeted drug delivery.

Concept of the Sens-o-Spheres with power receiver, microcontroller and signal processing, battery as well as encapsulation. (c) TU Dresden

The COMPAMED, which takes place annually co-located to the MEDICA in Dusseldorf, Germany, is an established and world-wide well-known marketplace for medical components and technologies. Every year, the COMPAMED asserts itself as the leading international marketplace for suppliers of medical manufacturing.

Especially in the field of medical devices for mobile diagnostics, therapy and laboratory equipment increasingly powerful, smart and reliable high-tech solutions are needed. This is why the demand for miniaturization of medical components continues to grow steadily.

Schematic illustration of the visible-light-controlled reconfigurable surface functions. © MPI-P

The functionalization of surfaces with different physical or chemical properties is a key challenge for many applications. For example, the defined structuring of a surface with hydrophobic and hydrophilic areas can be used for the separation of emulsions, like water and oil. However, the creation of user-defined surface properties is a challenge. Researches from the Max Planck Institute for Polymer Research in Mainz (MPI-P), the University of Science and Technology of China in Hefei and the University of Electronic Science and Technology in Chengdu (China) have now developed surfaces that can easily be patterned with different functionalities using visible light.

Markus Koch (3rd from left), Bernhard Thaler (4th fro left), head of institute Wolfgang Ernst (far right) and team in the "Femtosecond-Laser-Lab" at the Institute of Experimental Physics at TU Graz. ©Lunghammer - TU Graz

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet. In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on processes in molecules and clusters which take place on time scales of picoseconds (10⁻¹² seconds) and femtoseconds (10⁻¹⁵ seconds). Now Koch and his team have achieved a breakthrough in the research on completely novel molecular systems.