Ein Cytochrom-Molekül  wurde mit einem magnetischen Etikett versehen (farbige Struktur rechts oben). Zusammen mit einem Bestandteil des Cytochroms (rot) konnte dann der Abstand bestimmt werden. © AG Schiemann/Uni Bonn

Wissenschaftlern der Universität Bonn ist es gelungen, einem wichtigen Zellprotein bei der Arbeit zuzusehen. Sie nutzten dazu eine Methode, mit der man Strukturänderungen komplexer Moleküle messen kann. Das weiter entwickelte Verfahren erlaubt es, derartige Prozesse in der Zelle zu beobachten, also der natürlichen Umgebung. Die Forscher stellen zudem eine Art Werkzeugkasten zur Verfügung, der die Vermessung unterschiedlichster Moleküle erlaubt. Ihre Studie ist jetzt in der Zeitschrift „Angewandte Chemie International Edition“ erschienen. Wenn wir eine vorweihnachtliche Walnuss öffnen wollen, benutzen wir dazu in der Regel einen Nussknacker. Der besteht im einfachsten Fall aus zwei Schenkeln, die sich um ein Gelenk gegeneinander bewegen und so Druck auf die Schale ausüben können. Ganz simpel, eigentlich – um zu begreifen, wie so ein Nussknacker funktioniert, genügt es uns, ihn ein einziges Mal in Aktion zu sehen.

Schema der Elektronenstrahl-induzierten Abscheidung.

Wissenschaftler der Universitäten Bremen, Bielefeld und Erlangen-Nürnberg beteiligen sich an einem multinationalen EU-Projekt zur Nanotechnologie. Nanotechnologie gilt als die Technologie des 21. Jahrhunderts. Sie liefert die Grundlagen, um Produkte von nur wenigen Nanometern Größe in jeder gewünschten Form herzustellen: für Mikroprozessoren, elektronische Schaltungen in Computern und in der Telekommunikation, in der Medizin und in der Biotechnologie, um nur einige Einsatzfelder zu nennen. Die wirtschaftliche Bedeutung der Nanotechnologie nimmt rasant zu. Vor diesem Hintergrund fördert die Europäische Kommission seit kurzem das Marie-Curie Trainings-Netzwerk ELENA (Low energy ELEctron driven chemistry for the advantage of emerging NAnofabrication methods), an dem 13 Universitäten, vier Forschungsinstitute und fünf Unternehmen aus 13 europäischen Ländern beteiligt sind.

Dr. Gregor Fuhrmann vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS). G. Fuhrmann

Neue BMBF-Nachwuchsgruppe um Gregor Fuhrmann erforscht, wie Medikamente gezielt zu Krankheitserregern im Körper geschleust werden können. Bakterien entwickeln zunehmend Resistenzen gegen die gängig eingesetzten Antibiotika – unter anderem als Folge der übermäßigen und zum Teil falschen Anwendung der Medikamente. Zudem haben Antibiotika häufig unangenehme Nebenwirkungen, da sie auch nützliche Bakterien abtöten. Der Pharmazeut Dr. Gregor Fuhrmann, Wissenschaftler am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), möchte eine Technologie entwickeln, mit der Antibiotika im Körper gezielt zu den krankmachenden Bakterien transportiert werden.

Nach Stationen in Zürich, Kanada und Schottland erforscht der ERC Starting Grant-Träger Stefan Freunberger an der TU Graz neue Energiespeichersysteme.  © Lunghammer - TU Graz

Forscher der TU Graz zeigt in Nature Materials, dass sich die hohe Energiedichte von Batterien dank flüssigem Ladungsspeicher mit der hohen Leistung von Superkondensatoren in ein System vereinen lässt. Batterien und Superkondensatoren: Die beiden elektrochemischen Energiespeicher sind wie Tag und Nacht. Beide speichern Energie, und beide geben sie gezielt wieder frei – das allerdings mit großen Unterschieden: Batterien speichern sehr große Energiemengen, die sie langsam, aber beständig wieder abgeben. Superkondensatoren können nur geringe Energiemengen speichern, geben diese Energie aber viel leistungsstärker ab und erzielen kurzzeitige Spitzenleistungen.