Structure of a volume-regulated chloride channel (center: ribbon diagram, right: selectivity filter, left: regions with positively charged amino acids). Raimund Dutzler, UZH

Biochemists at the University of Zurich have determined the detailed structure of a volume-regulated chloride channel. This cellular valve is activated in response to swelling to prevent the cell from bursting. The protein also plays an important role in the uptake of chemotherapeutics and the release of neurotransmitters after a stroke. The controlled regulation of its activity thus opens up a promising strategy for novel therapies.

Demonstrator for the production of ethene from CO2. Fraunhofer IGB

Hydrogen peroxide, ethene, alcohols: The Fraunhofer lighthouse project “Electricity as a raw material” is developing electrochemical processes that use renewable electricity to synthesize basic chemicals - with the aim of making the chemical industry more sustainable. From June 11 to 15, Fraunhofer UM-SICHT will be presenting the results together with eight other Fraunhofer Institutes at ACHEMA 2018.

Main authors of the study (from l.): Molecular biologist Dr. Sebastian Leidel, biochemist Katja Hartstock (lead author), molecular biologist Benedikt Nilges und biochemist Prof. Andrea Rentmeister. ©WWU/E. Wibberg

Researchers at the Cells-in-Motion Cluster of Excellence at University of Münster have developed a new method enabling them to locate important modifications to messenger RNA. This is the result of an interdisciplinary collaboration between biochemists and molecular biologists. It has been published in “Angewandte Chemie” (International Edition).

Solar cells with three, four or five busbars can be interconnected in the adhesive stringer. © Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems ISE and teamtechnik, an international leader in production technology, report that it is now possible to connect high efficiency solar cells using electrically conductive adhesives in series production. The results of the joint research project »KleVer« show that the adhesive technology is ready for the market and can be used as an alternative to the widespread soft soldering interconnection technology. Due to the much lower process temperatures of this technology compared to soldering, temperature-sensitive high efficiency solar cells can be connected using adhesives in a gentle and material-saving process.