Physicist Martin Hauck fits a silicon carbide transistor into the measuring apparatus: researchers at FAU have discovered a method for finding defects at the interfaces of switches. FAU/Michael Krieger, Martin Hauck

 

Transistors are needed wherever current flows, and they are an indispensable component of virtually all electronic switches. In the field of power electronics, transistors are used to switch large currents. However, one side-effect is that the components heat up and energy is lost as a result. One way of combating this and potentially making considerable savings is to use energy-efficient transistors. Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. This will speed up the process of developing more energy-efficient transistors in future. They have now published their findings in the renowned journal Communications Physics.*

Through contact with water, the seed of Neopallasia pectinata from the family of composite plants forms a slimy sheath. The white cellulose fibres anchor it to the seed surface. © Kreitschitz

 

The seeds of some plants such as basil, watercress or plantain form a mucous envelope as soon as they come into contact with water. This cover consists of cellulose in particular, which is an important structural component of the primary cell wall of green plants, and swelling pectins, plant polysaccharides. In order to be able to investigate its physical properties, a research team from the Zoological Institute at Kiel University (CAU) used a special drying method, which gently removes the water from the cellulosic mucous sheath. The team discovered that this method can produce extremely strong nanofibres from natural cellulose. In future, they could be especially interesting for applications in biomedicine. The team’s results recently appeared as the cover story in the journal Applied Materials & Interfaces.

The Gram-negative Klebsiella pneumoniae bacterium often becomes resistant to common antibiotics. NIAID/CC BY 2.0

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use natural means to acquire mechanisms that protect them from harmful substances. For instance against the agent albicidin: Harmful Gram-negative bacteria possess a protein that binds and inactivates albicidin. The underlying resistance mechanism has been investigated at atomic resolution by scientists from the Helmholtz Centre for Infection Research (HZI) and the associated Helmholtz Institute for Pharmaceutical Research Saarland (HIPS).

Jena doctoral student Benjamin Kintzel looks at a laboratory vessel containing crystals of a novel molecule that may possibly be used in a quantum computer. Photo: Jan-Peter Kasper/FSU

 

Quantum computers could vastly increase the capabilities of IT systems, bringing major changes worldwide. However, there is still a long way to go before such a device can actually be constructed, because it has not yet been possible to transfer existing molecular concepts into technologies in a practical way. This has not kept researchers around the world away from developing and optimising new ideas for individual components. Chemists at Friedrich Schiller University in Jena (Germany) have now synthesised a molecule that can perform the function of a computing unit in a quantum computer. They report on their work in the current issue of the research journal ‘Chemical Communications’.