InNoPlastic animation video screenshot

We are delighted to share with you the introduction video of the InNoPlastic project.

Based on the proven MCR microarray analysis platform of the Munich-based GWK Präzisionstechnik GmbH scientists at the Technical University of Munich have developed a new microarray-based rapid test for SARS-CoV-2 antibodies. Sebsatian Kissel / TUM

During the continued progression of the Corona pandemic, rapid, inexpensive, and reliable tests will become increasingly important to determine whether people have the associated antibodies – either through infection or vaccination. Researchers at the Technical University of Munich (TUM) have now developed such a rapid antibody test. It provides the result in only eight minutes; the aim is to further reduce the process time to four minutes.
There are currently more than 20 different test procedures available for determining whether a person has antibodies against the new Corona virus. The waiting times for the results range between ten minutes and two and a half hours.

 

 

COVID pandemic fast-tracks technological development that will clean plastic litter in oceans. The current COVID pandemic challenges our societies with extensive amounts of plastic mask debris released into our environment. As a response to this growing issue, and to respond to the nanoparticle pollution in the water ecosystems, several technological solutions are being accelerated to achieve the overall goal – a cleaner, safer and healthier environment for everyone. InNoPlastic, a newly launched EU H2020 research and innovation project, combines ultra-sound methodologies with other innovative solutions, to tackle plastic litter and enable easier removal from oceans and the seas worldwide.

To fear or not to fear? Nanoplastics, electron microscopy image, colored, 150.000x. Empa / ETH

The images leave no one cold: giant vortices of floating plastic trash in the world's oceans with sometimes devastating consequences for their inhabitants – the sobering legacy of our modern lifestyle. Weathering and degradation processes produce countless tiny particles that can now be detected in virtually all ecosystems. But how dangerous are the smallest of them, so-called nanoplastics? Are they a ticking time bomb, as alarming media reports suggest? In the latest issue of the journal Nature Nanotechnology, a team from Empa and ETH Zurich examines the state of current knowledge – or lack thereof – and points out how these important questions should be addressed.