Von der Natur inspiriert: Materialwissenschaftler der Uni Jena nutzen strukturierte Oberflächen, um medizinische Implantate sicherer zu machen

Die Zahl der medizinischen Implantate wächst. Allein in Deutschland werden Jahr für Jahr fast eine viertel Million Hüftendoprothesen und zehntausende von Blutgefäßprothesen implantiert. Was den Betroffenen auf der einen Seite ein Plus an Lebensqualität beschert, birgt auf der anderen Seite jedoch nach wie vor Risiken: „Heutige Implantatmaterialien, wie Polymere und Metalle, können unerwünschte Nebenwirkungen im menschlichen Organismus verursachen“, sagt Prof. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena und nennt als Beispiele das Auftreten von Blutgerinnseln oder Infektionen.

Medizinische Implantate sicherer zu machen, ist ein Ziel des Materialwissenschaftlers Jandt und seines Teams, dem die Forscher nun mit zwei aktuellen Studien einen Schritt nähergekommen sind. Im Fachmagazin „Colloids and Surfaces B – Biointerfaces“ berichten die Jenaer Forscher, wie sie Polymeroberflächen so verändern können, dass diese die Anhaftung von Blutplättchen und damit die unerwünschte Blutgerinnung wesentlich reduzieren (doi:10.1016/j.colsurfb.2016.05.022). Darüber hinaus zeigen sie, wie sich Oberflächen von Titanimplantaten modifizieren lassen, um das Riskio eines Bewuchses mit gefährlichen Krankheitserregern zu reduzieren (doi:10.1016/j.colsurfb.2016.05.049).

Blutgefäßprothesen bestehen heute vorwiegend aus Dacron, einem Polyester-Polymer oder Teflon. „Weil Blut dazu neigt, im Kontakt mit diesen Materialoberflächen zu gerinnen, besteht die Gefahr, dass sich die künstlichen Blutgefäße mit Blutgerinnseln verschließen, was lebensbedrohlich sein kann“, erläutert Prof. Jandt. Um die Anhaftung von Blutplättchen auf den künstlichen Oberflächen zu verringern, haben sich die Wissenschaftler von der Natur inspirieren lassen. „In natürlichen Blutgefäßen wird die Blutgerinnung u. a. dadurch unterdrückt, dass die Zellen, mit denen die Gefäße ausgekleidet sind, eine typische dreidimensionale Form aufweisen und etwas aus der Gefäßoberfläche herausragen.“ Diese natürliche Form diente den Materialwissenschaftlern als Vorbild für die Oberfläche eines neuen künstlichen Blutgefäßes.

Wie sie in der nun vorgelegten Untersuchung zeigten, weist diese im Vergleich zu einer herkömmlichen unstrukturierten Polymeroberfläche eine um etwa 80 Prozent geringere Anhaftung von Blutplättchen auf. Mit Computersimulationen zeigten die Materialwissenschaftler weiter, dass die durch die Blutströmung verursachten Scherspannungen (d. h. Strömungskräfte) auf den bioinspirierten Oberflächen für diese reduzierte Anhaftung von Blutplättchen verantwortlich sind. „Wir hoffen, damit eine wichtige Grundlage für neue Gefäßprothesen gelegt zu haben“, kommentiert Prof. Jandt diese Ergebnisse, die in Zusammenarbeit mit dem Universitätsklinikum Jena und dem Institut für Bioprozess- und Analysenmesstechnik e. V. in Heilbad Heiligenstadt entstanden.

Auch beim Verständnis von Infektionen an metallischen Titanimplantaten sind die Materialwissenschaftler der Uni Jena einem bioinspirierten Ansatz gefolgt. So schützt sich eine Reihe von Tieren gegen die Besiedelung durch Mikroorganismen, indem ihre Haut mikroskopisch kleine Strukturen aufweist, die die Anhaftung von Bakterien durch physikalische Kräfte verhindern. Solche Strukturen, wie sie etwa auf der Haut von Haien oder den Flügeln von Libellen vorkommen, haben die Forscher vereinfacht auf das Implantatmaterial Titan übertragen.

Wie sie gemeinsam mit Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI) in ihrer nun veröffentlichten Arbeit belegen, lässt sich dadurch die Anhaftung von Mikroorganismen rein physikalisch um mehr als die Hälfte reduzieren.

 

Wie Materialoberflächen Zellgemeinschaften steuern picture 1 | Die Doktoranden Stefan Maenz (l.) und Tam Pham Thanh im Otto-Schott-Institut für Materialforschung der Universität Jena. Foto: Jan-Peter Kasper/FSU
Die Doktoranden Stefan Maenz (l.) und Tam Pham Thanh im Otto-Schott-Institut für Materialforschung der Universität Jena.
Foto: Jan-Peter Kasper/FSU

 

Wie Materialoberflächen Zellgemeinschaften steuern picture 2 | Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren. Foto: Jan-Peter Kasper/FSU
Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren.
Foto: Jan-Peter Kasper/FSU

 

Original-Publikationen:
Pham TT et al. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces (2016) DOI: http://dx.doi.org/10.1016/j.colsurfb.2016.05.022
Lüdecke C et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces (2016) DOI: http://dx.doi.org/10.1016/j.colsurfb.2016.05.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730,
E-Mail: K.Jandt[at]uni-jena.de

Weitere Informationen finden Sie unter
http://www.uni-jena.de

idw – Informationsdienst Wissenschaft | Nachrichten, Termine, Experten
space

Ihr persönliches Abo

space
space   space
space   space
space

Wie Materialoberflächen Zellgemeinschaften steuern

space
space

Informationsdienst Wissenschaft - idw - Pressemitteilung
Friedrich-Schiller-Universität Jena, Stephan Laudien, 08.07.2016 11:26

Von der Natur inspiriert: Materialwissenschaftler der Uni Jena nutzen strukturierte Oberflächen, um medizinische Implantate sicherer zu machen


Die Zahl der medizinischen Implantate wächst. Allein in Deutschland werden Jahr für Jahr fast eine viertel Million Hüftendoprothesen und zehntausende von Blutgefäßprothesen implantiert. Was den Betroffenen auf der einen Seite ein Plus an Lebensqualität beschert, birgt auf der anderen Seite jedoch nach wie vor Risiken: „Heutige Implantatmaterialien, wie Polymere und Metalle, können unerwünschte Nebenwirkungen im menschlichen Organismus verursachen“, sagt Prof. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena und nennt als Beispiele das Auftreten von Blutgerinnseln oder Infektionen.

Medizinische Implantate sicherer zu machen, ist ein Ziel des Materialwissenschaftlers Jandt und seines Teams, dem die Forscher nun mit zwei aktuellen Studien einen Schritt nähergekommen sind. Im Fachmagazin „Colloids and Surfaces B – Biointerfaces“ berichten die Jenaer Forscher, wie sie Polymeroberflächen so verändern können, dass diese die Anhaftung von Blutplättchen und damit die unerwünschte Blutgerinnung wesentlich reduzieren (doi:10.1016/j.colsurfb.2016.05.022). Darüber hinaus zeigen sie, wie sich Oberflächen von Titanimplantaten modifizieren lassen, um das Riskio eines Bewuchses mit gefährlichen Krankheitserregern zu reduzieren (doi:10.1016/j.colsurfb.2016.05.049).

Blutgefäßprothesen bestehen heute vorwiegend aus Dacron, einem Polyester-Polymer oder Teflon. „Weil Blut dazu neigt, im Kontakt mit diesen Materialoberflächen zu gerinnen, besteht die Gefahr, dass sich die künstlichen Blutgefäße mit Blutgerinnseln verschließen, was lebensbedrohlich sein kann“, erläutert Prof. Jandt. Um die Anhaftung von Blutplättchen auf den künstlichen Oberflächen zu verringern, haben sich die Wissenschaftler von der Natur inspirieren lassen. „In natürlichen Blutgefäßen wird die Blutgerinnung u. a. dadurch unterdrückt, dass die Zellen, mit denen die Gefäße ausgekleidet sind, eine typische dreidimensionale Form aufweisen und etwas aus der Gefäßoberfläche herausragen.“ Diese natürliche Form diente den Materialwissenschaftlern als Vorbild für die Oberfläche eines neuen künstlichen Blutgefäßes.

Wie sie in der nun vorgelegten Untersuchung zeigten, weist diese im Vergleich zu einer herkömmlichen unstrukturierten Polymeroberfläche eine um etwa 80 Prozent geringere Anhaftung von Blutplättchen auf. Mit Computersimulationen zeigten die Materialwissenschaftler weiter, dass die durch die Blutströmung verursachten Scherspannungen (d. h. Strömungskräfte) auf den bioinspirierten Oberflächen für diese reduzierte Anhaftung von Blutplättchen verantwortlich sind. „Wir hoffen, damit eine wichtige Grundlage für neue Gefäßprothesen gelegt zu haben“, kommentiert Prof. Jandt diese Ergebnisse, die in Zusammenarbeit mit dem Universitätsklinikum Jena und dem Institut für Bioprozess- und Analysenmesstechnik e. V. in Heilbad Heiligenstadt entstanden.

Auch beim Verständnis von Infektionen an metallischen Titanimplantaten sind die Materialwissenschaftler der Uni Jena einem bioinspirierten Ansatz gefolgt. So schützt sich eine Reihe von Tieren gegen die Besiedelung durch Mikroorganismen, indem ihre Haut mikroskopisch kleine Strukturen aufweist, die die Anhaftung von Bakterien durch physikalische Kräfte verhindern. Solche Strukturen, wie sie etwa auf der Haut von Haien oder den Flügeln von Libellen vorkommen, haben die Forscher vereinfacht auf das Implantatmaterial Titan übertragen.

Wie sie gemeinsam mit Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI) in ihrer nun veröffentlichten Arbeit belegen, lässt sich dadurch die Anhaftung von Mikroorganismen rein physikalisch um mehr als die Hälfte reduzieren.

Original-Publikationen:
Pham TT et al. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.022;
Lüdecke C et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730,
E-Mail: K.Jandt[at]uni-jena.de
Weitere Informationen finden Sie unter
http://www.uni-jena.de
Zu dieser Mitteilung finden Sie die folgenden Bilder:
Die Doktoranden Stefan Maenz (l.) und Tam Pham Thanh im Otto-Schott-Institut für Materialforschung der Universität Jena.
Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren.

Arten der Pressemitteilung:
Forschungsergebnisse
Wissenschaftliche Publikationen

Sachgebiete:
Biologie
Medizin
Werkstoffwissenschaften

Die gesamte Pressemitteilung können Sie im WWW abrufen unter:
http://idw-online.de/de/news655942

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
Friedrich-Schiller-Universität Jena

Möchten Sie Ihr Abonnement erweitern, ändern, aussetzen oder abbestellen, können Sie dies über Ihren persönlichen idw-Zugang im WWW tun. Sie erhalten nach Aufruf dieses Links eine weitere E-Mail, mit der Sie direkt angemeldet werden und auf die Einstellungsseite geleitet werden.
http://idw-online.de/token-_GiDJnQsim_qA_EfKivCmMlTX6NsGseR/de/waitfortokenmail



Δ


space
space

Ihr Abo

space
space

Dieser Überblick wurde gemäß Ihren persönlichen Abo-Einstellungen zusammengestellt und an ihre Adresse gesandt. Sie können die Einstellungen jederzeit bearbeiten.
Um bei Weiterleitung dieser E-Mail zu verhindern, dass der Empfänger der Weiterleitung Ihre Einstellungen verändert, wird bei Aufruf der obigen Links eine weitere E-Mail an Ihre Adresse gesandt. Nach dem Aufruf des in dieser E-Mail enthaltenen Links kommen Sie zu Ihren Einstellungen. Diese Links sind nur für eine begrenzte Zeit nutzbar.



Δ

space
space

idw - Informationsdienst Wissenschaft e. V.
http://idw-online.de
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

space
Anmelden